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Abstract— Spiders can sense sounds in a frequency range
between approximately 40 and 600 Hz by the use of hairs; they
can detect e.g. the puff of wind of buzzing flies. On the contrary,
scorpions use hairs as tactile sensors for obstacle avoidance.
To integrate the advantages of both types of sensoric hairs,
this article presents an artificial auditory-tactile sensor system,
which combines the principles of the auditory hairs of spiders
and the tactile hairs of scorpions, and investigates some neural
techniques for processing these sensor signals. The different types
of signals are discerned by recurrent neural networks in such a
way that their output can generate different reactive behavior,
like obstacle avoidance and tropism, of a walking machine. An
evolutionary algorithm is applied to find an appropriate solution
to this problem.

I. INTRODUCTION

In nature, the biological auditory system plays an important
role in the life of an animal. It is used for different tasks like
prey-detection, communication and localization. For instance,
the wandering spiders (Cupiennius salei) use theirTrichoboth-
ria hairs at their limbs as an auditory sensor system. They
detect low-frequency sound ranging from approximately 40 to
600 Hz, like the puff of wind created by buzzing flies [6],
[16], which act as prey signals. As the auditory system, the
tactile sensing system is necessary for insects and animals to
avoid obstacles while wandering around or seeking food. The
obvious example of tactile-hair sensors is the sensory hairs
of scorpions. Scorpions have a very poorly performing visual
system, which has difficulties to recognize obstacles; therefore
they use their hair sensors on the pectines and chelicera [9],
[15] to avoid obstacles while walking.

Analogs of these auditory and tactile hair sensor systems of
spiders and scorpions can be useful in providing sensor infor-
mation for a sensor-driven control system in wheeled robots as
well as in walking machines. There still exist implementations
of both types of sensors on real robots [1], [2], [4], [10],
[11], [13], [17] but roboticists have not yet implemented these
two sensor functions into one sensor system. The obtained
sensor signals can be analyzed by either using a Fast Fourier
Transform [3], [5] or by using diverse filter techniques. These
methods are often too slow for generating a fast reactive action
of machines, they are often too complex, and sometimes too
expensive.

Here a simple combined auditory-tactile sensor is intro-

duced together with its neural signal processor. It should
enable autonomous walking machines to move around for
in-door applications. The sensor shall protect the legs of
walking machines from hitting obstacles, like chair or desk
legs, and allow navigation based on sound tropism. This
approach transfers knowledge of an artificial whisker system
[14] with a real mouse whisker attached, hair-like, to a
capacitor microphone, and modifies it for our auditory-tactile
application. For data processing of the mixed sensor signals
an evolutionary algorithm is used to develop the structure of
an appropriate recurrent neural network, and to optimize its
parameters, such that it can generate the desired behaviors.

The following section describes the construction and spec-
ifications of an artificial auditory-tactile sensor. Section 3
explains the neural networks for preprocessing of the sensor
signals in order to recognize the two different inputs. The
experiments and results are discussed in section 4. Conclusions
and an outlook on future work are given in the last section.

II. AN ARTIFICIAL AUDITORY-TACTILE SENSOR

This sensor consists of a mini-microphone (0.6 cm diame-
ter), a root and a whisker-shaped material taken from a whisker
of a real mouse (4.0 cm long). This is shown in Fig. 1.

In order to build this sensor, the mouse whisker was inserted
and fixed into a root by special glue and then a root was
glued onto the diaphragm of a microphone with relatively
hard glue. The circuit designed for this sensor is a simple
microphone preamplifier with Vcc maximum at 5 V. The
physical force of the whisker vibrates the membrane of the
capacitor microphone, which results in a voltage signal.

Fig. 1. The auditory-tactile sensor consisting of a whisker of a real mouse,
a rubber root and a capacitor microphone. Left: assembly parts of a sensor;
Right: the real sensor including a preamplifier circuit.

This signal is amplified by the microphone’s integrated



amplifier circuit, and is then sampled onto a sound card via a
line-in of a computer for the purpose of recording and feeding
it afterwards into the artificial neural network.

III. A SIMPLE NEURAL SENSORY SIGNAL
PROCESSOR

The following approach to signal processing applies dynam-
ical properties of recurrent neural networks. The standard ad-
ditive neuron model with sigmoidal transfer function together
with its time-discrete dynamics is given by

ai(t + 1) = Bi +
n∑

j=1

Wij tanh(aj(t)) i = 1, . . . , n (1)

where n denotes the number of units,ai their activity, Bi

represents a fixed internal bias term together with a stationary
input to neuroni, andWij synaptic strength of the connection
from neuronj to neuroni. The output of neurons is given
by the sigmoidoi = tanh(ai). Input units are configured as
linear buffers.

The desired network is divided into two subordinate net-
works, one for processing auditory signals to detect low-
frequency sound, and one for processing tactile signals when
the hair is sweeping over obstacles. Later the outputs of both
networks will drive the corresponding reactive behavior of
walking machines.

A. A low-pass filter for auditory signals

In order to create an auditory processing network, which
is able to recognize frequency ranges of sound between 50
and 300 Hz, we first choose input signals of sine shape of
100 Hz and of 1000 Hz and map them to a voltage range
between -1 and 1. To keep the problem simple we first use an
ideal noise-free signal with constant amplitude. If a network is
found which can distinguish between low-frequency (100 Hz)
and high-frequency (1000 Hz) sounds, the next step of the
experiment is to apply noisy sounds with varying amplitudes
in a realistic environment to get a robust auditory processing
network for low-frequencies.

First we utilize a single model neuron configured as a
hysteresis element [7]; i.e., the network consists of an input
neuron and a neuron with positive self-connection correspond-
ing to a dynamical neural Schmitt trigger [12] (compare Fig.
2). Applying results from [12], we fix the weightW1 = 1 from
the input to the output unit, the bias term(B = −0.1) and
vary the self-connection weightW2 of the output unit from
0 to 2.5 (see Fig. 2). ForW2 = 2.45 the network suppresses
high-frequency sound of 1000 Hz, while low-frequency sound
of 100 Hz passes through it.

By varying a weightW2 of the self-connection of the output
unit, one observes a splitting of the output signal, due to the
hysteresis effect, which is different for different frequencies.
This suggests that the hysteresis domain of a single neuron
with self-connection can play an important role for the filtering
of signals. To visualize this phenomenon, output versus input

Fig. 2. Left: a simple network realizing a low-pass filter ; parameters are
W1 = 1, W2 = 2.45 andB = −0.1. Right: the characteristic curve of this
network with its cut off frequency at 300 Hz.

for low-and high-frequency signals are plotted in Fig. 3, and
the different “hysteresis effects” can be compared with respect
to the different strengths of the self-coupling.

Fig.3 shows that the hysteresis effects for high-frequency
sound occur already forW2 = 0.25, although it can not yet
be observed for low-frequency sound. IfW2 is increased up to
W2 = 2.45 high-frequency sound is almost suppressed (low
output) whereas the hysteresis effect for low-frequency sound
switches the amplitude between almost saturation values.
Increasing the self-connection up toW2 = 2.50 also low-
frequency sound is suppressed.

Because the bias term defines the base activity of the neuron,
the amplitude of an high-frequency output is compensated
and broken up between -0.804 and -0.998; eventually it will
never rise above 0 again. In this situation, we suggest a low-
pass filter function for a configuration with this specific bias
(−0.1) and weight (W2 = 2.45). The neural network behaves
as a low-pass filter because the output amplitude of high-
frequency sound stays around -0.9 while the output amplitude
of low-frequency sound still oscillates between -0.997 and
0.998. More experiments and results will be demonstrated and
described in the next section.

Having established that a single neuron is able to act as
a low-pass filter for noise-free signals of constant amplitude,
the next step is to derive a network, which behaves like a
robust low-pass filter and which is capable to recognize low-
frequency sound in a realistic environment. We improve the
simple auditory network now by adding one self-connected
hidden unit, and by adjusting again the weights. The final
result, an advanced low-frequency detection network, is shown
in Fig. 4.

The first synapseW1 and the excitatory self-connectionW3

of the hidden unit reduce the amplitude of high-frequency
sound. It becomes smaller than the amplitude of low-frequency
sound. Afterwards the signals are again amplified byW2. Then
the bias termB together with the excitatory self-connection
W4 of the output unit shift the high-frequency signal to
oscillate around -0.998 with a small amplitude. As result the
network suppresses the high-frequency sound.



Fig. 3. Comparison of the “hysteresis effects” between input and output signals of high-and low-frequency sounds for W2= 0.25, 2.45 and 2.50, respectively.
Left: low-frequency sound (100 Hz); Right: high-frequency sound (1000 Hz).

Fig. 4. Left: a simple and robust network for auditory processing, performing
as a low-pass filter for noisy signals with varying amplitude. The bias term
B is equal to -6.7 and all weights are positive, W1 = 0.01, W2 = 32, W3 =
1 and W4 = 0.27. Right: the characteristic curve of the network displaying
the cut off frequency at 300 Hz.

B. Processing tactile signals

To process the signals from the tactile channel of the sensor,
we apply theENS3-algorithm (Evolution of Neural Systems

by Stochastic Synthesis [8]) to evolve an appropriate neural
network. At the beginning only one input and one output
unit without connections are given. TheENS3-algorithm then
increases or decreases the number of an synapses and hidden
units throughout the evolutionary process, and optimizes the
parameters at the same time, until the output signals are good
enough for a reasonable solution. The fitness functionF is
chosen in such a way that evolution minimizes the square
error between target and output signals; i.e., it is defined by

F =
N∑

t=1

(1− (target(t)− output(t))2) , (2)

whereN is the maximal number of time steps, usually set
to N ≈ 20000. The target signal gives a +1 if a tactile signal
is presented, and -1 in all other cases. This is exemplified in
Fig. 5, where on the left the real sensor signals are shown,
and on the right a corresponding target signal is depicted.

The resulting network at 800 generations had a fitness value
of F = 0.6, which is sufficient to recognize the tactile signals.
It consists of 2 hidden units and 7 synapses as shown in Fig.6.



Fig. 5. Left: real signals coming from the physical sensor. Right: the
corresponding target function.

Fig. 6. A network processing tactile sensor signals. It filters the low-
frequency sound. Its output signal follows the tactile signal, which has a
high frequency around 2000 Hz.

To explain the detailed function of the network will go
beyond the scope of this article.

C. The integrated network

One now can combine the advanced auditory processing net-
work and the tactile processing network to obtain an integrated
network which is able to distinguish between low-frequency
sound and tactile signals. This network, consisting of one input
unit, 3 hidden units and 2 output units, is shown in Fig.7. It is
active at output 1 and oscillating between approximate 0.998
and -0.997 if low-frequency sound is recognized, and it is
active at output 2 if a tactile signal is recognized. Otherwise
both outputs are inactive.

Fig. 7. The combined network recognizes low-frequency sound around 100
Hz (Output 1), and the tactile signal around 2000 Hz (Output 2).

IV. EXPERIMENTS AND RESULTS

To test the capability of the auditory-tactile processing
network, several experiments have been carried out. The input
signal is recorded via an artificial auditory-tactile sensor and
the output signals are sampled through the line-in of a sound
card at a sampling rate of 48 kHz. The network is applied to
a 1 GHz personal computer.

The experiments are divided into 3 parts. First, we feed
constant amplitudes of noise-free input signals (Fig. 8a) into
the simple auditory network (see Fig. 2) as well as into
the advanced auditory network (see Fig. 4) . Then the same
procedure is done with the noisy signals recorded via a
sensor from a realistic environment (Fig. 8b) and finally both
networks are tested with the signals obtained from the sensor
installed on a walking machine’s leg (Fig. 8c). Second, we
test a tactile processing network by applying the tactile signal
recorded from sweeping a sensor over the object (Fig.9). Third,
we experiment with an artificial auditory-tactile processing
network by feeding in mixed signals between low-frequency
sound and the tactile signal (Fig. 10).

Fig. 8 shows that the simple auditory network is able to
recognize the low-frequency signal when the signal is noise-
free with constant amplitude. For the the noisy signals, the
advanced auditory network is more robust and it is sufficient
to detect the sound with a high enough amplitude. Further-
more, the advanced auditory network is also able to filter
noise coming from the motors of a walking machine during
walking and standing. Therefore, we integrate the advanced
auditory network into the tactile processing network for signal
processing of the sensor.

The output signal (see Fig. 9) from the network proves that
discrete time dynamical systems as well as an evolutionary
algorithm are able to construct the tactile processing network.
The output signal is shifted to around –0.77 when the tactile
signal is not present.

V. CONCLUSIONS

An auditory-tactile hair sensor was presented which consists
of a mini-microphone with an integrated pre-amplifier, and a
real mouse-whisker attached on it. In a couple of experiments
it was shown that a simple recurrent neural network can
discern between low-frequency auditory signals coming from
this sensor, and higher frequency signals related to tactile
information. Part of the network has been developed by an
evolutionary algorithm to derive a network which is robust
against real world noise. The output signals from this network
will then be used to drive the reactive behavior of a walking
machine controlled by an evolved recurrent neural network.
For instance, the tactile signals should generate negative
tropism, and the low-frequency sound a positive tropism so
that the machine follows a sound source but avoids obstacles.
Thus, with the auditory-tactile hair sensor together with the
developed network implemented on a walking machine the
described set-up should function in analogy to the sensor
systems of spiders and scorpions.



Fig. 8. Left: the input signals for the auditory networks. Middle: the corresponding output signals from the simple auditory network. Right: the corresponding
output signals from the advanced auditory network. All figures have the same scale in x-axis and y-axis.

Fig. 9. Left: mixed input signals with sound at 100 Hz and the tactile signal. Right: the response of the network to the tactile signal. Both figures use the
same scale in x-axis and y-axis.

Fig. 10. Left: mixed input signals, sound at 100 Hz and tactile signals, for the network. Right: signals at output 1 (upper right) and 2 (lower right); they are
active only for sound and tactile signals, respectively. All other signals are suppressed. All figures use the same scale in x- and y-axis.
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