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Abstract—A small modular neural network is presented The following section describes the technical specifica-
which is able to control the sensor-driven behavior of walking  tions of the walking machine. Section 3 explains the neural
machines with many degrees of freedom. The controller  yarcention-action system for reactive behavior. The exper-
is composed of a so called minimal recurrent controller . . . .
(MRC) for sensory signal processing, a SO(2)-network as iments and results are discussed in sectlon 4, Qonclusmns
neural oscillator to generate the rhythmic leg movements, and an outlook on future research are given in the last

and a velocity regulating network (VRN) which expands the  section.
steering capabilities of the walking machine. This recurrent
neurocontroller enables the machine to explore an in-door I[l. THE WALKING MACHINE AMOS-WDO02

environment by avoiding obstacles. It was developed and | ired b hol fth tile’s trunk and it
tested using a physical simulation environment, and was then nspired by morphology of tn€ reptile's trunk and 1ts mo-

successfully transferred to the physical four-legged walking tion, we design the four-legged walking machine AMOS-
machine, called AMOS-WDO02. WDO02 with a backbone joint at the trunk, which facilitates

a more flexible and faster motion. The trunk is composed
of the backbone joint which can rotate vertically, four
Research on biologically inspired walking machines isidentical legs, each with two degrees of freedom, and
focused for the most part on the construction of suchadditionally an active tail with two degrees of freedom
machines [7], [16], on a dynamic gait control [14], [17], rotating in the horizontal and vertical axes (see Fig.1). All
and on the generation of an advanced locomotion contrdeg joints are driven by analog modelcraft servo motors
[4], [11], for instance on rough terrain [6], [10]. Most producing a torque between 70 and 90 Ncm. The backbone
researches do not concentrate on the generation of a sensfwint is driven by a digital servo motor with a torque
driven behavior of walking machines. In general, thosebetween 200 and 220 Ncm. For the active tail, micro-
walking machines are solely designed for the purpose ofnalog servo motors with a torque around 20 Ncm are
motions without sensing the surrounding environment. Twaselected. The height of the walking machine is 12 cm
articles [1], [9] reported on neural controllers for locomo- without its tail and its weight is approximately 3 kg. In
tion and obstacle avoidance generated by an evolutionamddition, this machine has two infrared (IR) sensors, two
algorithm. Both controllers use the same approach to avoithtegrated auditory-tactile sensors [15] for different reactive
obstacles. They inhibit the neurons of the legs on thdehavior; e.g. obstacle avoidance, protecting the legs from
opposite side of a detected obstacle. The walking machineslliding with obstacles and sound tropism. On the active
then turn in a slight curve, and the walking velocity is tail, a mini wireless camera with built in a microphone is
reduced. But these controllers sometimes have difficultiegstalled for monitoring and observation while the machine
to avoid obstacles or when the walking towards a walljis walking. All in all AMOS-WDO02 has 11 active degrees
because they are not able to turn around or even to wal&f freedom and 4 sensors, and therefore it can serve as a
backwards. reasonably complex platform for experiments concerning
In this article, the modular approach for neural controlthe functioning of neural perception-action systems.
of a reactive behavior is introduced, and the four-legged The developed neural controller is finally programmed
autonomous walking machine AMOS-WDO02 is employedinto a Personal Digital Assistant (PDA) which communi-
as a platform for testing the developed neural controllercates with the Multi-Servo 10-Board (MBoard) to control
Two simple infrared sensors are used to enable a sensdhe servo motors and to receive sensory input signals via
driven reactive behavior. The neural controller generatean RS232 interface.
the obstacle avoidance behavior by changing the rhythmic
leg movements, also preventing the walking machine from
getting stuck in corners or in a deadlock situation by ap- In order to create robust and effective neural con-
plying hysteresis effects provided by the recurrent structurérollers which are able to generate exploration and obstacle
of the network. avoidance behaviors, the dynamical properties of recurrent

I. INTRODUCTION

IIl. NEURAL PERCEPTIONACTION SYSTEMS



Fig. 1. Left: the 4-legged walking machine AMOS-WDO02 with 11
active degrees of freedom. Right: top view of AMOS-WDO02 showing the

backbone joint corresponding to the morphology of the reptiles trunk. Fig. 2. The simulated walking machine performing obstacle avoidance

and exploration behaviors.

neural networks are utilized. The standard additive neuron

model with sigmoidal transfer function together with its {ne parameters were manually adjusted for using it in
time-discrete dynamics is given by our approach. First, the weight§, , from the input to

n the output units of both sides are set to a high value
a;(t+1) :Bi+z Wij tanh(a;(t)) i=1,....,n (1) to eliminate the noise of the sensors, ¥, = 7.

j=1 Then the self-connection weights of the output neurons
wheren denotes the number of units, their activities, Were manually adjusted to derive a reasonable hysteresis
Bi represents a fixed internal bias term together with énput interval. This effect determines the turning angle for

stationary input to neurofy andW;; the synaptic strength avoiding obstacles. Both self-connections are set to 5.4
of the connection from neurop to neuroni. The output for convenience. Finally, the recurrent connections between

of the neurons is given by the sigmoig = tanh(a;).  Output neurons were symmetrized and manually adjusted to

Input units are configured as linear buffers. This neurathe value -3.55. This guarantees the optimal functionality.
controller is divided into three subnetworks which areThe resulting neural network is shown in Fig.3.

the signal preprocessingnetwork, the neural oscillator

network and thevelocity regulatingnetwork. All networks Input2(IR) Inputl(IR)

are described in detail in the following sections. They

have been tested first in a physical simulation environment,

which simulates the walking machine in an environment

with obstacles (compare Fig.2). The simulator is based 54
on Open Dynamics Engife(ODE) and it enables an
implementation, which is faster than real time and which

is precise enough to mirror corresponding behavior of a Output2 Output!

physical robot. This simulation environment is connected

to the Integrated Structure Evolution Environment (ISEE)gig. 3. The structure of a MRC with appropriate weights for this
[13] which is the software platform for developing neural application.

controllers. Eventually, a derived controller is downloaded

into the walking machine and then tested in the in-door The sensory signals are mapped onto the intérval 1],

en\/'lronmer}t, €.g. a living room or an off!ce. ESpeC'a”Y’wnh —1 representing “no obstacles”, aid‘an obstacle is
as in the simulator, the walking machine is able to avoid " :
.~~~ "near”. The signals are used as Inputl and Input2 of the neu-

obstacles and to get out of corners and deadlock situations. “
ral controller. The output neurons of the MRC have “super-

critical” self-connections which produce a hysteresis effect

A. Preprocessing of the sensor inputs for both output signals. A strong excitatory self-connection
The perception systems are driven by using two |[R(> 5) will hold the roughly constant output signal longer

sensors. These sensors are used to detect obstacles!fA? @ smaller one, resulting in a larger turning angle to
a distance between 10-30 cm. For the preprocessing &void obstacles or corners. To visualize this phenomenon,
sensory signals, a neural structure called minimal recurrerif'€ Nysteresis effect is plotted in Fig.4, and the different
controller (MRC) [12] is applied. This controller has been Weights of an excitatory self-connection can be compared.

developed for a two wheeled miniature Khepera robot, " @ddition, there is a third hysteresis phenomenon
On the background of its well understood functionality Mvolved which is associated to the even 2-loop between
the two output neurons [2]. In general conditions, only

Isee also: http://opende.sourceforge.net/ one neuron at a time is able to get a positive output,
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-1.5 ‘ ‘ . , [ - guadrupeds has been studied e.g. by Hiroshi Kimura [5].
O 1 26 S 76 101 126 There, a neural oscillator network with four neurons is
- constructed by connecting four neural oscillator’s, each
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of which drives the hip joint of one of the legs. Here
Fig. 4. Comparison of the “hysteresis effect” with different self- we US? a so Cal_led SO(2)-network [3] to .generate the
connection weights at the output neuron. a) shows that the output signghythmic locomotion. It has already been implemented

(smashed line) immediately decreases from 1 to -1 when the input sign@uccessfu”y as central pattern generator (CPG) in the six-
(full line) is inactive (-1). b) shows that the output signal (smashed line)

stays longer at 1 and then decreases to -1 when the input signal (full lindf99€d Walking maCh?ne Morpheus [9]. The same StrUCt'ure
is inactive. c) shows that the output signal stays longest at 1 and theand weights are applied to control the four-legged walking

decreases to -1. machine AMOS-WDO02.

The SO(2)-network consists of two neurons (compare
Fig.6), where the sinusoidal neuron outputs correspond to
a quasi-periodic attractor. They are used to drive the motors
girectly for generating the locomotion. This network is

The phenomenon is presented in Fig.5. By applying thesl§nplemented on a PDA having a update frequency of 25.6

phenomena, the walking machine is enabled to avoid thb/Z and it generates a sinusoidal output with a frequency

obstacles, corners and deadlock situations. Finally, the ouf’-‘c approximately 0.8 Hz.

put signals, outputl and output2 of the MRC together with
the velocity regulating network described below, decide ant
switch the behavior of the walking machine; for instance,
switching the behavior from “walking forward” to “turn
left” when there are obstacles on the right, or the other wa
round. The MRC output also decides in which direction N
the walking machine should turn in corners or deadlock Output2 Outputl Time
Sitl'!ations depe_ndin.g Or-l Which sensor. has been preViousl}{g 6. Left: the structure of the SO(2)-network with the synaptic weights
active. In speC|aI SIFuatlonS’ “ke_ \,Nalkmg towards a wall, for 6u.r purpbseBl and B2 are bias terms witlB1 = B2 = 0.01. Right:
both IR sensors might get positive outputs at the samee output signals of neurons 1 (smashed line) and 2 (full line) from the
time, and, because of the velocity regulating network, thesO(2)-network. The output of neuron 1 is used to drive all thoracic joints
‘t’;’]a'ki”% machine is able to walk backwards and to |eav€22a(|)?;n?;ckbone joint and the output of neuron 2 is used to drive all
e wall.

while the other one has a negative output, and vice vers

1.
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By using symmetric output weights a typical trot gait is D. The modular neural controller
obtained, which enabled an efficient motion. In a trot gait The combination of all three networks leads to an
(see Fig.7), the diagonal legs are paired and move togethefifective neural network for reactive behavior control in
changing environments. One oscillating output signal from
; G the SO(2)—network is directly connected to all basal joints,
[ stance [ ]Swing while the other output is connected to the thoracic joints
only indirectly, passing through all hidden neurons of the
VRN through the so called—input. In addition, for a
more flexible and faster motion, the backbone joint can
be activated by applying the first oscillating output signal
(Outputl of the SO(2)-network). The output neurons of
the MRC network are also connected to all hidden neurons
Fig. 7. Left: the typical trot gait. X-axis represents time and y-axis Of the VRN asy—inputs. This neural controller and the

representds the legs. During ;he swing pﬂase Ewhiteb?loiki) ;heffeet haiyecation of the corresponding motor neurons on the walking
no ground contact. During the stance phase (gray blocks) the feet tou : : ;
the ground. Right: the orientation of the legs. thachine are shown in Fig.9.
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C. The velocity regulating network

To change the motions, e.g. from walking forwards to
backwards and to turning left and right, the simplest way
is to perform a 180 degree phase shift of the sinusoide
signals which drive the thoracic joints. To do so, we
introduce the velocity regulating network (VRN) which is
described in [8]. It performs approximately a multiplication
of two input valuesz,y € [—1,1]. For our purpose the
input z is the oscillating signal coming from the SO(2)-
network to generate the locomotion and the inpus the
sensory signal coming from the MRC network to drive
the behavior. Fig.8 presents the network consisting of fou
hidden neurons and one output neuron. Fig.8 on the rigt
shows that the output signal gets a phase shift of 18l
degrees, when the sensory signal (ingutchanges from
-1to 1.

Input x Inputy

Amplitude

Fig. 9. This is the final modular neural controller. It generates a trot
gait which is modified when obstacles appear. The bias tdsntf the

VRN are again all equal to -2.48285. Two infrared sensors are directly
connected to the input neurons of the MRC network. If the obstacle is
detected, the outputs of the MRC network make the walking machine
Output turn because the VRN changes the quasi-periodic signals at the thoracic
joints.

Fig. 8. Left: the VRN with four hidden neurons and the given bias

terms B which are all equal to -2.48285. Right: the output signal (full

line) when the inputy is equal to 1 and the output signal (smashed line) IV. EXPERIMENTS AND RESULTS

when the input; is equal to -1. The performance of the network shown in Fig.9 is firstly
tested on the physical simulation with a complex environ-



ment (see Fig.2), and then it is downloaded into the mobilez ,. N =
processor of AMOS-WDO02 for a test on the physical § . as ‘ l\ j L
autonomous robot. The simulated walking machine an¢™ -
the physical walking machine behave almost similarly. The
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sensory information of IR sensors is used to modify theg:_ [——» ' N vl { “
machine behavior as expected from a perception-actiogm- \ ﬂ | s s ] L [_
system. If the obstacles are presented on either the rigl =" L L . T
or the left side, the controller will change the rhythmic Time e T
movement of the legs, causing the walking machine to turr _ 1 ) 1
on the spot and immediately avoiding the obstacles. ool AVATARVLATTALT D ATATAVASAVAVATA B A VALVAALY AT

In some situations, like approaching a corner and a deac | o S (S . a3 .
lock situations, the MRC preprocessing network decide: ' * % %W 5u™me 1w mm w1 0w e e
the turning direction, left or right. As shown in Fig.10, MO _ * 1 15
and M1 of the thoracic joints (compare Fig.9) are turnec s | 1/, [\ /I U AU S oY
into the opposite direction, if the left IR (IR2) detects ../~ | "~~~ " —
the obstacle; correspondingly M2 and M3 of the thoracic ' * ™ * =™ 1w Wi o s 1o e
joints are turning into the opposite direction when the . s "
right IR (IR1) is active. In special situations, e.g. walking e\ A AR AANL =N AN AN =0
towards a wall or detecting obstacles on both sides, bot §* WAy BT AT LT D TITAVATAITAAY
IR sensors are simultaneously active (see third columi TR SR U R T ST TIT T
in Fig.10). Thus, MO, M1, M2 and M3 of the thoracic = " e PP . R
joints are turning into another directions which causes the ssin ANDAAAN “TANM JU‘“ f\ “lﬂ N lew m ﬂ im
walking machine to walk backwards and eventually it is §+1 VUV UL UL afl U W 1 VU IU U
able to leave the wall. Flgll is a series of phOtOS of thes .1.11 2 9 % 101 106 19 1 -ui 2 51 76 100 126 151 176 " 1 % 51 % 10016 19 1%
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example experimentswvhich show the reactive behavior of
the walking machine. The photos on the left in Fig.11 show ey
that the walking machine can avoid the unknown obstacle H )
and it can also leave a corner (middle column in Fig.11). & F%}

To compare the controller mentioned in [9] with the one
described here, we imp|emem that controller and test ifig- 1_0. Left: if the obstacles are presented_on _the left of the wall_<ing
with the same environments. The result is shown in theiaTiie %G tion bresented by the arrow smashed ines in ine lower
right column of photos. It can be seen that the controllepicture. Middle: if the obstacles are detected at the right of the walking
[9] has difficulties to avoid and leave the corner. At first, themachine, then two motors (M2, M3) on its left are reversed which is
eft IR sensor detects a side wall an then motors (M0 andfeSEre¢ by e aron smashed Ines i the ower pctue. R n e
M1 comparing Fig.12) are inhibited affecting the walking in the reversion of all motors (M0, M1, M2 and M3). They are presented
machine to turn right with a slight curve. After that it faces by the arrow smashed lines in the lower picture.
to the corner, both IR sensors are active, and then all motors

(MO, M1, M2 and M3) are inhibited. Therefore the walking

machine gets stuck in front of the corner. Fig.12 shows thghanging the locomotion appropriately. The controller is
motor signals as well as the signals from IR sensors. Ifised to generate the walking gait and to perform the
all experiments, the walking cycle is approximately 1.25 sreactive behavior; for instance, exploring an in-door en-
and the walking velocity without using the backbone jointyironment by wandering around, avoiding obstacles when
is 10 cm/s. they are detected, and leaving from a corner as well as
from deadlock situations. In case of protecting the legs of
the walking machine from hitting obstacles, like chair or
The four-legged walking machine AMOS-WDO?2 is pre- desk legs, one can easily install more IR sensors on the
sented as a reasonably complex robot platform to tedegs, and all there signals can send to the corresponding
a neural controller generating the robust sensor-driveinput neurons of the MRC network. However, the controller
exploration and obstacle avoidance behaviors. has been tested successfully in the physical simulation
The modular neural controller was designed as a neurdnvironment as well as on the walking machine. Thus we
network composed of a preprocessing network (MRC)were able to reproduce these basic behaviors, generally
a two-neuron oscillator network for central pattern gen-achieved for wheeled robots, also for a machine with many
eration, and the velocity regulating network (VRN) for degrees of freedom. The generated behaviors are of course
essential also for an autonomous walking machine. More
demanding tasks will be related to the use of additional

X j

V. CONCLUSIONS

2for more demonstrations see http://www.ais.fraunhofer.getamate
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Fig. 12. First, obstacles are detected on the left of the walking machine
and the two right motors (MO, M1) are effected by inhibition (smashed
frames) while the others are still unaffected (because no obstacles are
detected on the right side). Then, both IR sensors are detecting an obstacle
(the wall) and all motors (MO, M1, M2 and M3) are inhibited (solid

frames).
' ' ‘ [4] H. Cruse, V. Dirr and J. Schmitz, “Control of hexapod walking in
biological systems,In Proceedings of the 2nd Int. Symposium on

(5]

(6]

P v 4

Fig. 11. Examples of the behavior driven by the two IR sensors
of the four-legged walking machine AMOS-WDO02. Left: the typical
behavior avoiding obstacles. Middle: the walking machine is able to leave
from the corner. Right: for comparison the controller described in [9] is
implemented. The photos show that now the walking machine cannot
avoid the wall and leave the corner. All photos are taken with the same|g)
time slot.

(7]

(8]

[10]

sensors. Therefore, future research we will make use of
signals coming from combined auditory and tactile sensorg11]
which are fixated on the two front legs. They will be
used for protecting legs from colliding with obstacles using|;;
tactile information, and also for navigation based on sound
tropism. Finally all these different reactive behaviors will 13]
be fused into one modular neural controller, where module[s
have to cooperate or compete as in versatile perception-

action systems. [14]
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