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Abstract— This paper describes reactive neural control used to
generate phototaxis and obstacle avoidance behavior of walking
machines. It utilizes discrete-time neurodynamics and consists
of two main neural modules: neural preprocessing and modular
neural control. The neural preprocessing network acts as a sensory
fusion unit. It filters sensory noise and shapes sensory data to
drive the corresponding reactive behavior. On the other hand,
modular neural control based on a central pattern generator is
applied for locomotion of walking machines. It coordinates leg
movements and can generate omnidirectional walking. As a result,
through a sensorimotor loop this reactive neural controller enables
the machines to explore a dynamic environment by avoiding
obstacles, turn toward a light source, and then stop near to it.

Keywords— Recurrent neural networks, Walking robots, Mod-
ular neural control, Phototaxis, Obstacle avoidance behavior.

I. I NTRODUCTION

Recognizing that, to date, most research in the domain of
biologically inspired walking machines concentrated on the
construction of machines with animal-like properties per-
forming efficient locomotion [4], [7]. Others have focused
on the generation of locomotion based on engineering
technologies [2] as well as biological principles [3], [8].
In general, all these machines were solely designed for the
purpose of motion without responding to environmental
stimuli. In this research area, only a few of them have
attended to implement different (reactive) behaviors on
physical walking machines [1], [2]. This highlights that less
attention has been paid to the walking machines which can
react to environmental stimuli. In other words, contribu-
tions developing embodied control techniques for various
reactive behaviors of many degrees-of-freedom systems are
rare.

From this point of view, in this article, we present
a physical walking machine which can interact with a
dynamic environment by performing obstacle avoidance
and phototaxis. That is the walking machine can explore
its environment by avoiding obstacles (negative tropism),
turn toward a light source (positive tropism), and then
stop near to it. These desired behaviors are inspired by
the first autonomous two-drive-wheel robotsElmer and
Elsie of Grey Walter [13] which were also capable of
responding to a light stimulus and avoiding obstacles. To
this end, we are able to reproduce such reactive behaviors,
generally achieved for the wheeled robots, for a machine

with many degrees of freedom facing sensorimotor coordi-
nation problems of a more complex system. However, the
main purpose of this article is not only to demonstrate the
walking machine performing different types of tropism but
also to investigate the analyzable neural mechanisms un-
derlying this approach in order to understand their inherent
dynamical properties. Furthermore, in this study, we will
try to show that reactive neural control can be a powerful
technique to better understand and solve sensorimotor co-
ordination problems of many degrees-of-freedom systems
like sensor-driven walking machines.

The following section describes the technical specifica-
tions of the walking machine. Section 3 explains a reactive
neural controller for phototaxis and obstacle avoidance
behavior. The experiments and results are discussed in
section 4. Conclusions are given in the last section.

II. T HE WALKING MACHINE AMOS-WD06

The AMOS-WD06 [9] is a hexapod robot. Each leg
has three joints (three DOF): the thoraco-coxal (TC-) joint
enables forward (+) and backward (−) movements, the
coxa-trochanteral (CTr-) joint enables elevation (+) and
depression (−) of the leg, and the femurtibia (FTi-) joint
enables extension (+) and flexion (−) of the tibia (see
Fig. 1b). Each tibia segment has a spring damped compliant
element to absorb impact force as well as to measure
ground contact during walking. All leg joints are driven by
analog servo motors. The machine is constructed with two
body parts: a front part where two forelegs are installed and
a central body part where two middle legs and two hind legs
are attached. They are connected by one active backbone
joint driven by a digital servo motor. This machine has six
foot contact sensors, seven infrared (IR) sensors, two light
dependent resistor (LDR) sensors, and one upside-down
detector (UD) sensor (see Fig. 1a). The foot contact sensors
are for recording and analyzing the walking patterns. The
IR sensors are used to elicit negative tropism, e.g., obstacle
avoidance and escape response, while the LDR sensors
serve to activate positive tropism like phototaxis. The UD
sensor is applied to trigger a self-protective reflex behavior
when the machine is turned into an upside-down position
(see [10] for details).



Fig. 1. (a) The physical six-legged walking machine AMOS-WD06. (b)
The physical leg with three DOF of the AMOS-WD06.

III. R EACTIVE NEURAL CONTROL

Reactive neural control (see Fig. 2) for phototaxis (pos-
itive tropism) and obstacle avoidance (negative tropism)
behavior is formed by two main modules: the neural
preprocessing unit and the modular neural control unit. The
neural preprocessing unit serves also for sensory fusion.
It filters sensory noise and shapes sensory data to drive
the corresponding reactive behavior. The modular neural
control unit is used for locomotion generation of the
walking machine. It coordinates leg movements and can
generate omnidirectional walking. The details of these two
neural units are described in the following sections.

Fig. 2. Diagram of reactive neural control. The controller acts as an
artificial perception-action system, i.e., the sensor signals go through the
neural preprocessing into the modular neural control which commands
the actuators. As a result, the robot’s behavior is generated by interacting
with its environment in a sensorimotor loop.

All neurons of the network are modeled as discrete-time
non-spiking neurons. The activation and output of each
neuron are governed by (1), (2), respectively:

ai(t + 1) =
n∑

j=1

Wij oj(t) + Bi i = 1, . . . , n, (1)

oi = tanh(ai), (2)

where n denotes the number of units,ai their activity,
Bi represents a fixed internal bias term together with a
stationary input of neuroni, Wij the synaptic strength
of the connection from neuronj to neuroni, and oi the
output of neuroni. Input units, e.g., sensory neurons, are
configured as linear buffers.

A. Neural preprocessing of sensory data

In order to generate the reactive phototaxis and obstacle
avoidance behavior representing as orientational responses,
we make use of two LDR (LDR1,2, positive stimuli)
and only four front IR (IR1,...,4, negative stimuli) sensor
signals (see Fig. 7). These sensory data provide environ-
mental information for our sensor-driven robot system.
Nonetheless, the raw sensory signals require preprocessors
to eliminate the sensory noise as well as to shape all sen-
sory data for activating the appropriate reactive behavior.
To do so, neural preprocessing is applied. It is constructed
based on the minimal recurrent controller (MRC) structure
[12]. The original controller [12] (colored box in Fig. 3)
has been developed for controlling only obstacle avoidance
behavior of a miniature Khepera robot, which is a two
wheeled platform. Here, it is adjusted and expanded for
controlling the walking behavior of the machine to avoid
obstacles or escape from a deadlock situation (negative
tropism) as well as turn toward and approach a light source
(positive tropism).

The principle connection weightsW1,...,4 of the network
were manually adjusted with respect to dynamical proper-
ties of recurrent neural networks as follows. First, the self-
connection weightsW1,2 of the output neuronsO1,2 were
manually tuned to derive a reasonable hysteresis interval
on the input space. That is the width of the hysteresis is
proportional to the strength of the self-connections (see
[9], [10] for details). In this case, the hysteresis effect
determines the turning angle for avoiding obstacles and
approaching a light source, i.e., the wider the hysteresis,
the larger the turning angle. Both self-connections are set to
2.0 to obtain a suitable turning angle of the AMOS-WD06
(see Figs. 4a and c). Then, the recurrent connectionsW3,4

between output neurons were symmetrized and manually
adjusted to -3.5. Such inhibitory recurrent connections are
formed as a so-called even loop [11], which also shows
hysteresis phenomenon (see Fig. 4b). In general conditions,
only one neuron at a time is able to produce a positive
output, while the other one has a negative output, and vice
versa. However, both neurons can show high activation only
if their inputs are very high, e.g.,> 0.64 (see Fig. 4b). This
guarantees the optimal functionality for avoiding obstacles
or escaping from corner and deadlock situations.

The sensor values (LDR1,2 and IR1,...,4) are linearly
mapped into the closed interval[−1,+1]. For the LDR
sensors, valuesLDR1,2 = −1.0 refers to darkness and
LDR1,2 = +1.0 to the maximal measurable light intensity.
The IR valuesIR1,...,4 are−1.0 if no obstacle is detected
and value+1.0 represents that an obstacle is near. The
mean value of the two left IR sensor signals (IR3,4) is used
as the first input (Input1) to the network while the second
input (Input2) corresponds to the two right IR sensors
(IR1,2). Parallelly, the left and right LDR sensor signals
are provided as the third (Input3) and forth (Input4)
inputs indirectly passing through hidden neuronsH1,2.
Concerning the priority of the sensory signals, here the
IR sensor signals are desired to have higher priority than



the LDR sensor signals. That is if obstacles and light are
detected at the same time, the neural preprocessor has to
elicit IR sensor signals and inhibit LDR sensor signals. As
a consequence, the obstacle avoidance behavior will be exe-
cuted instead of the phototaxis. The phototaxis is performed
if and only if the obstacles are not detected. To do so, we
set the connection weightsW5,6 from Input1 andInput2
to the output units to higher values than the onesW7,8

connecting between the hidden and output neurons. Thus,
they were set toW5,6 = 7.0 and W7,8 = 4.5. To ensure
the optimal functionality for priority setting of the sensory
signals, we additionally project two inhibitory connections
W9,10 from Input1 and Input2 to H1 and H2, respec-
tively, together with a bias termB at each of the hidden
neuron. These parameters were again manually tuned and
were, as a result, set toW9,10 = −2.0 and B1,2 = −1.5.
Furthermore, two inhibitory synapsesW11,12 were extra
integrated and set with the same strength ofW7,8, i.e.,
−4.5. These inhibitory cross connections cause that an
activated output neuron (showing high activation≈ +1)
driven by its ipsilateral LDR signal can become deactivated
(showing low activation≈ −1) if the contralateral LDR
signal becomes activated (see Fig. 4d). An important effect
of this cross inhibition is to obtain effective phototaxis; i.e.,
the machine is able to walk forward during performing
phototaxis and finally can approach to the source. On the
other hand, without these cross inhibition the machine will
only try to turn toward the source without performing
forwards motion. As a consequence, such a behavior might
have difficulties to approach the source.

Note that one can optimize the network parameters, for
instance by using an evolutionary algorithm [6], [12] but
for our purposes here, it is good enough. The complete
preprocessing network and its hysteresis effect are shown
in Figs. 3 and 4, respectively.

Fig. 3. The neural preprocessing network for the coordination of positive
(LDR sensor signals) and negative (IR sensor signals) stimuli. Its outputs
O1,2 are directly fed to input neuronsI4,5 of the modular neural control
(see Fig. 5) to stimulate the phototaxis and obstacle avoidance behavior of
the AMOS-WD06. Note thatH1,2 are the hidden neurons of the network.

This structure and its parameters cause the network to
filter, prioritize, and coordinate the different sensory inputs.
It can even determine the turning angle as well as the

Fig. 4. (a), (b) Hysteresis domain ofInput1 (Raw − IR3,4) for the
output neuronO2 of the network while the other output neuronO1 shows
low ≈ −1 and high≈ +1 activation, respectively. All other sensory
inputs (Raw− IR1,2, Raw−LDR1, andRaw−LDR2) are fixed to
≈ −1 for case (a) but≈ +1 for case (b). In case (a), the machine will
walk forward F (drawing on the left) as long asO1 and O2 give low
activation but it will turn rightTR as soon asRaw−IR3,4 increases to
values above−0.55 where onlyO2 shows high activation meaning that
there is an obstacle on its left (drawing on the right). However, it will
return to walk forwardF whenRaw− IR3,4 decreases to values below
−0.68 meaning that no obstacle is detected. In case (b), the machine will
turn left TL (i.e., it avoids an obstacle on its right although it detects a
light source in front of it, compare drawing on the left) as long as the
value ofRaw−IR3,4 is below0.64 whereO1 has high activation while
O2 shows low activation. Increasing the value ofRaw − IR3,4 above
0.64 causesO2 to become active. The machine then walks backward
B, i.e., it detects obstacles on both sides (drawing on the right). It will
return to turn leftTL again if the value ofRaw − IR3,4 is below
0.54. (c) Hysteresis domain ofInput3 (corresponding toRaw−LDR2)
for O1 with the other inputs fixed to≈ −1. O1 shows high activation
if Raw − LDR2 increases to values above−0.25 and returns to low
activation if Raw − LDR2 decreases to values below−0.4 while O2

shows low activation in all cases. As a result, the machine will turn left
TL (drawing on the right) whenO1 shows high activation meaning that
it turns toward a light source otherwise it walks forward (drawing on the
left). (d) Hysteresis domain ofRaw − LDR2 for O2 with the other
inputs fixed asRaw − IR1,2,3,4 ≈ −1 and Raw − LDR1 ≈ +1.
Here, O2 shows low activation only if the value ofRaw − LDR2 is
higher than−0.13 while O1 gives low activation all the time. However,
O2 will provide high activation ifRaw − LDR2 decreases to values
below−0.28. As a consequence, the machine will turns toward the source
(drawing on the left) and then it is able to walk forward if the source is
almost in front of it (drawing on the right) causing high activation of both
LDR signals (Raw − LDR1,2). Finally, it can approach to the source.
In reverse cases, ifRaw − IR1,2 andRaw − LDR1 are varied while
the other inputs are fixed, they will derive the same hysteresis effect as
Raw − IR3,4 andRaw − LDR2 do.

turning direction of the walking machine by utilizing the
hysteresis effect. Applying the output signal ofO1 andO2

(see Fig. 7) to their target neuronsI4 andI5 in the neural
control module (see Fig. 5), the walking machine can
autonomously perform phototaxis and obstacle avoidance
behavior through a sensori-motor loop with respect to
environmental stimuli. In other words, the walking machine
will turn toward, approach, and eventually stop near a light
source by determining a threshold of the mean value of the
left and right LDR sensor signals (MLDR). At the same
time, it will also avoid obstacles if they are detected.



B. Modular neural control

Modular neural control for locomotion of the walk-
ing machine consists of three subordinate networks1 or
modules (colored boxes in Fig. 5): a neural oscillator
network, two velocity regulating networks (VRNs), and
a phase switching network (PSN). The neural oscillator
network, serving as a central pattern generator (CPG)
[5], generates periodic output signals. These signals are
provided to all CTr-joints and FTi-joints only indirectly
passing through all hidden neurons of the PSN. TC-joints
are regulated via the VRNs. Thus, the basic rhythmic leg
movement is generated by the neural oscillator network and
the steering capability of the walking machine is realized
by the PSN and the VRNs. Fig. 5 shows the complete
network structure together with the synaptic weights of the
connections between the controller and the corresponding
motor neurons as well as the bias term of each motor
neuron. These synaptic weights and all bias terms were
manually adjusted to obtain an optimal gait; i.e., a typical
tripod gait where the diagonal legs are paired and move
synchronously.

This modular neural control can generate different walk-
ing patterns which are controlled by the four input neurons
I2,...,5. Furthermore, a self-protective reflex2 can be acti-
vated via the input neuronI1 which will excite TR1 and
TL1 joints and all CTr- and FTi- joints and inhibit the
remaining TC-joints. Appropriate input parameter sets for
the different walking patterns and the reflex behavior are
presented in Table I where the first column describes the
desired actions in accordance with five input parameters
shown in the other columns. Abbreviations are:FDiR and
BDiR = forward and backward diagonal motion to the
right, FDiL andBDiL = forward and backward diagonal
motion to the left,LaR and LaL = lateral motion to the
right and the left. Note that marching is an action where
all the legs are positioned and held in a vertical position
and support is switched between the two tripods.

As shown in Table I, this neural controller can produce
at least 12 different actions with respect to the given inputs.
For all cases,I1 and I3 are set as binary values (0 or
1) which then activate or inhibit the movement of all
joints and control directions of diagonal or lateral walking,
respectively. On the other hand,I2 can vary between 0.0
and 1.0 which suppresses the amplitude of the periodic
signal of the FTi-joints; i.e., the larger the value ofI2

the lower the amplitude. As a consequence, the walking
machine will perform a very small step in the lateral or
diagonal direction or no step at all ifI2 is set to 1.0. Setting
I2 to negative values might cause unstable walking.

Furthermore, varyingI4 and I5 between−1.0 and 1.0
(see Fig. 6) while other input parameters are fixed (I1 = 0,
I2 = 1.0, andI3 = 1 or 0), the amplitude of the periodic

1Here, we discuss only main functions of the network. A more complete
description of each subordinate network is given in [9], [10].

2The action is triggered when the machine is turned into an upside-
down position. As a consequence, it stands still in this position as long
as the stimulus (UD signal) is presented (not shown here but see [10] for
details).

Fig. 5. The modular neural control of the six-legged walking machine
AMOS-WD06 consists of three different neuron groups: input, hidden,
and output. Input neuronsI are the neurons used to control walking
direction (I2,...,5) and to trigger the protection reflex (I1). Hidden
neuronsH are divided into three modules (CPG, VRNs, and PSN (see
[9], [10] for details)). Output neurons (TR, TL, CR, CL, FR, FL)
directly command the position of servo motors. Abbreviations are: BJ = a
backbone joint, TR(L) = TC-joints of right (left) legs, CR(L) = CTr-joints
of right (left) legs, FR(L) = FTi-joints of right (left) legs. All connection
strengths together with bias terms are indicated by the small numbers
except some parameters of the VRNs given by A = 1.7246, B = -2.48285,
C = -1.7246. The location of the motor neurons on the AMOS-WD06 is
shown in the lower picture. Note that describing the controller driving
the machine also with the backbone joint will go beyond the scope of
this article. Thus, the motor neuron controlling the backbone joint BJ
is not activated; i.e., the backbone joint functions as a rigid connection.
However, it can be modulated by the periodic signal via the PSN or
VRNs to perform an appropriate motion, e.g., helping the machine during
climbing over obstacles or performing other tasks.

TABLE I

INPUT PARAMETERS FOR THE DIFFERENT WALKING PATTERNS

AND THE REFLEX BEHAVIOR.

Actions I1 I2 I3 I4 I5

Forward 0 1.0 1, 0 −1.0 −1.0
Backward 0 1.0 1, 0 1.0 1.0
Turn right 0 1.0 1, 0 −1.0 1.0
Turn left 0 1.0 1, 0 1.0 −1.0
Marching 0 1.0 1, 0 0.0 0.0
FDiR 0 0.0 0 −1.0 −1.0
BDiR 0 0.0 0 1.0 1.0
LaR 0 0.0 0 0.0 0.0
FDiL 0 0.0 1 −1.0 −1.0
BDiL 0 0.0 1 1.0 1.0
LaL 0 0.0 1 0.0 0.0
Reflex 1 0.0 ...1.0 1, 0 −1.0 ...1.0 −1.0 ...1.0

signals of the left and right TC-joints will be regulated. As
a consequence, the machine can perform straight and curve
walking in forward and backward directions, marching, and
spot turning in different radians (orientational motions).



According to these parameter settings, it is appropriate
and simple to generate the phototaxis and obstacle avoid-
ance behavior because such behavior corresponds mainly
to orientational motions rather than diagonal or lateral
motions. Thus, in the robot walking experiments presented
in the following section, the input parametersI1,...,3 are
fixed as described above where the diagonal and lateral
motions as well as the reflex action are deactivated. On
the other hand,I4,5 will be stimulated by preprocessed
sensory signals coming from the neural preprocessor (see
Fig. 3). As a result, the walking machine will walk forward
if no obstacle or light is detected and it will turn right or
left with respect to the sensory signals, e.g., turn toward a
light source (positive stimuli) but turn away from obstacles
(negative stimuli). It will also perform marching as soon
as it closely approaches a light source.

Fig. 6. Plot of the input space (I4, I5, see Fig. 5) which is classified into
four main areas. For input values in a dark square area (dabe), the walking
machine will perform spot turning to the left with different radians while
a white square area (efih) is for the right turn. In light gray triangle areas
(gde andgeh), they will move forward in different curves to the left and
the right and dark gray triangle areas (ebc andecf ) are for backward to
the right and the left, respectively. Additionally, ifI4 and I5 are varied
along the diagonal line (gec), the machines will walk straight forward
(ge) and backward (ec) with different walking speeds. Details on robot
walking experiments have been presented in [10].

IV. EXPERIMENTS AND RESULTS

This section describes experiments carried out to assess
the ability of the reactive neural controller to generate
phototaxis and obstacle avoidance as well as exploration
behaviors. The controller was implemented on a mobile
processor (a PDA) for testing the physical walking machine
in a real environment3. We encourage readers to watch
the video clips of the real robot walking experiments
at http://www.nld.ds.mpg.de/∼poramate/ICIS. Here, we re-
port the real time data of sensory and motor signals of the
walking machine during performing reactive behaviors in
different situations (see Fig. 7). Recall that generating the
reactive behaviors which correspond to orientation motions
will effect only the movement of the TC-joints (compare
TR1 andTL1 in Fig. 7) while the periodic movement of
the CTr-joints will remain unchanged (compareCR1 in
Fig. 7) and the FTi-joints will be inhibited (compareFR1

3During experiments, we use battery packs for powering the robot
system which can run up to 35 minutes.

in Fig. 7). Note that in the experiments the machine walks
with one gait type where the diagonal legs are paired and
move together; e.g.,R1, R3, and L2 step in phase while
the remaining legs step out of phase. Such that the motor
signals ofR1, R3, andL2 have similar patterns and perform
180 degrees out of phase with other motor signals ofL1,
R2, andL3.

Fig. 7. Sensory and motor signals during performing the reactive
behaviors. (a) Obstacle avoidance behavior. (b) Phototaxis. (c) Obstacle
avoidance behavior and phototaxis (see text for details). Abbreviations
are: IR1,...,4 = raw IR sensor signals;LDR1,2 = raw LDR sensor
signals;MLDR = the mean value of the left and right LDR sensor
signals;O1,2 = outputs of the neural preprocessor (see Fig. 3);F =
forward; TL = turn left; TR = turn right; B = backward;S = stop;
TR1, CR1, FR1 = motor signals of the TC-joint, CTr-joint, and FTi-
joint of the right front leg, respectively;TL1 = the motor signal of the
TC-joint of the left front leg.

Fig.7a shows the situation where the walking machine
performed only obstacle avoidance behavior. It can be seen
that TR1 is turned into the opposite direction (light gray
area), if the left IR sensors (IR3,4) detects the obstacle;
correspondinglyTL1 is turned into the opposite direction
(dark gray area) when the right IR sensor signal (IR1,2)
is active. As a consequence, the walking machine was
able to turn away from an obstacle and finally avoid
it. In other words, it turned rightTR if there was the
obstacle on its left and vice versa otherwise it walked
forwardF. In special situations, e.g., here walking toward a



wall, IR sensor signals on both sides were simultaneously
active. Thus,TR1 and TL1 were reversed into another
directions which causes the machine to walk backward
B. During walking backward the right IR sensor signal
became inactive while the left one was still active. As a
result, the active signal drove the machine to turn right
TR until; eventually, it was able to avoid the obstacle and
then continued walking forwardF.

Fig.7b presents the situation where the walking machine
detected a light source and no obstacles appeared around
it. It can be seen thatTL1 is turned into the opposite
direction (dark gray area), if the left LDR sensor (LDR2)
detects the source. On the other hand, if the right LDR
sensor signal (LDR1) is active,TR1 will be reversed (not
shown). During turning toward the source, both LDR sen-
sor signals got high activation the result of which enabled
the machine to walk forwardF. After that the walking
machine approached the source and eventually stoppedS
nears it by marching if the amplitude of the mean value
of the left and right LDR sensor signalsMLDR becomes
larger than a threshold value (here, 0.94). This results in
the motor signals of all TC-joints being automatically set
to 0.0.

Fig. 7c demonstrates the situation where an obstacle was
detected during performing phototaxis. At the beginning,
the walking machine walked forwardF whereO1,2 were
inactive (≈ −1) and then turned toward the source as soon
as one of the LDR signal shows high activation (here,
LDR1 meaning that the source was on its right). It turned
right by inverting the signals of all right TC-joints (compare
TR1, light gray area). While turning toward the source,
the machine detected the obstacle on its right whereIR1,2

became active. As a consequence, it turned leftTL to avoid
the obstacle (see the inversion of the motor signal ofTL1,
dark gray area) although it still detected the source. After
avoiding the obstacle it then again turned toward the source
and finally stoppedS in front of it.

As demonstrated, the reactive neural controller is suitable
to successfully enable the machine to perform phototaxis
and solve the obstacle avoidance task. Additionally, the
controller can even protect the machines from getting stuck
in corners or deadlock situations. This is demonstrated in
a video clip at http://www.nld.ds.mpg.de/∼poramate/ICIS.
Thus, due to this functionality, the walking machines can
autonomously perform exploration.

V. CONCLUSIONS

The six-legged walking machine AMOS-WD06 is pre-
sented as a reasonably complex robot platform for studying
sensorimotor coordination problems of many degrees-of-
freedom systems, for conducting experiments with neural
controllers, and even for testing artificial perception-action
systems.

In this study the controller of the walking machine was
designed purely as a neural network. It consists of two
neural modules: neural preprocessing and modular neural
control. The neural preprocessing unit obtained by a small
recurrent neural network functions as a sensor fusion unit.

Utilizing hysteresis phenomena of such a network, it can
filter sensory noise and combine different sensory signals
to stimulate the desired positive and negative tropisms
of the walking machine. The modular neural control, on
the other hand, performs as a locomotion generator. It
was constructed by integrating three different functional
neural modules: the neural oscillator network, the velocity
regulating networks, and the phase switching network. The
neural oscillator network acts as a CPG for basic rhythmic
leg movements while controlling different walking patterns
is done by the velocity regulating and the phase switching
networks. This modular neural control can produce at least
11 different walking patterns and a self-protective reflex by
using five input neurons. Coupling the neural preprocessing
with the modular neural control leads to a so-called reactive
neural control. It has been implemented on the embedded
system (mobile processor) of the walking machine. As
a result, the walking machine can autonomously perform
different types of tropisms, like phototaxis and obstacle
avoidance behavior using the sensorimotor loop. The pro-
posed neural technique has been shown to be adequate for
generating locomotion and various reactive behaviors of
the walking machine.
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