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Abstract— This paper describes reactive neural control used tovith many degrees of freedom facing sensorimotor coordi-
generate phototaxis and obstacle avoidance behavior of walkingation problems of a more complex system. However, the
machines. It utilizes discrete-time neurodynamics and consistﬁnain purpose of this article is not only to demonstrate the

of two main neural modules: neural preprocessing and modular IKi hi f ing diff £t f tropi but
neural control. The neural preprocessing network acts as asenso‘(’ff Ing machine pertorming diiférent types of tropism bu

fusion unit. It filters sensory noise and shapes sensory data @ISO t0 investigate the analyzable neural mechanisms un-
drive the corresponding reactive behavior. On the other handjerlying this approach in order to understand their inherent
modular neural control based on a central pattern generator igynamical properties. Furthermore, in this study, we will
applied for locomotion of walking machines. It coordinates leg ry to show that reactive neural control can be a powerful

movements and can generate omnidirectional walking. As a resul hni to better understand and solv nsorimotor
through a sensorimotor loop this reactive neural controller enable chnique to betler understand and solve sensorimotor co-

the machines to explore a dynamic environment by avoidingPrdination problems of many degrees-of-freedom systems
obstacles, turn toward a light source, and then stop near to it. like sensor-driven walking machines.

Keywords—Recurrent neural networks, Walking robots, Mod-  The following section describes the technical specifica-
ular neural control, Phototaxis, Obstacle avoidance behavior. tions of the walking machine. Section 3 explains a reactive
neural controller for phototaxis and obstacle avoidance
behavior. The experiments and results are discussed in

Recognizing that, to date, most research in the domain afection 4. Conclusions are given in the last section.
biologically inspired walking machines concentrated on the
construction of machines with animal-like properties per- II. THE WALKING MACHINE AMOS-WDO06
forming efficient locomotion [4], [7]. Others have focused
on the generation of locomotion based on engineering The AMOS-WDO06 [9] is a hexapod robot. Each leg
technologies [2] as well as biological principles [3], [8]. has three joints (three DOF): the thoraco-coxal (TC-) joint
In general, all these machines were solely designed for thenables forward (+) and backward-)Y movements, the
purpose of motion without responding to environmentalcoxa-trochanteral (CTr-) joint enables elevation (+) and
stimuli. In this research area, only a few of them havedepression-{) of the leg, and the femurtibia (FTi-) joint
attended to implement different (reactive) behaviors orenables extension (+) and flexior-) of the tibia (see
physical walking machines [1], [2]. This highlights that lessFig. 1b). Each tibia segment has a spring damped compliant
attention has been paid to the walking machines which caalement to absorb impact force as well as to measure
react to environmental stimuli. In other words, contribu-ground contact during walking. All leg joints are driven by
tions developing embodied control techniques for variousnalog servo motors. The machine is constructed with two
reactive behaviors of many degrees-of-freedom systems abmdy parts: a front part where two forelegs are installed and
rare. a central body part where two middle legs and two hind legs

From this point of view, in this article, we present are attached. They are connected by one active backbone
a physical walking machine which can interact with ajoint driven by a digital servo motor. This machine has six
dynamic environment by performing obstacle avoidancdoot contact sensors, seven infrared (IR) sensors, two light
and phototaxis. That is the walking machine can explorelependent resistor (LDR) sensors, and one upside-down
its environment by avoiding obstacles (negative tropism)detector (UD) sensor (see Fig. 1a). The foot contact sensors
turn toward a light source (positive tropism), and thenare for recording and analyzing the walking patterns. The
stop near to it. These desired behaviors are inspired biR sensors are used to elicit negative tropism, e.g., obstacle
the first autonomous two-drive-wheel robat8mer and avoidance and escape response, while the LDR sensors
Elsie of Grey Walter [13] which were also capable of serve to activate positive tropism like phototaxis. The UD
responding to a light stimulus and avoiding obstacles. Tsensor is applied to trigger a self-protective reflex behavior
this end, we are able to reproduce such reactive behaviorahen the machine is turned into an upside-down position
generally achieved for the wheeled robots, for a machingsee [10] for details).

|. INTRODUCTION



W A. Neural preprocessing of sensory data
O\

In order to generate the reactive phototaxis and obstacle
LMY avoidance behavior representing as orientational responses,
' we make use of two LDR IDR,», positive stimuli)
and only four front IR {R; 4, negative stimuli) sensor
signals (see Fig. 7). These sensory data provide environ-
mental information for our sensor-driven robot system.
Nonetheless, the raw sensory signals require preprocessors
to eliminate the sensory noise as well as to shape all sen-
(b) sory data for activating the appropriate reactive behavior.
To do so, neural preprocessing is applied. It is constructed
Fig. 1. (@) The physical six-legged walking machine AMOS-WDO06. (b) hased on the minimal recurrent controller (MRC) structure
The physical leg with three DOF of the AMOS-WDOS6. [12]. The original controller [12] (colored box in Fig. 3)
has been developed for controlling only obstacle avoidance
behavior of a miniature Khepera robot, which is a two
I1l. REACTIVE NEURAL CONTROL wheeled platform. Here, it is adjusted and expanded for
gcontrolling the walking behavior of the machine to avoid
bstacles or escape from a deadlock situation (negative
ropism) as well as turn toward and approach a light source

S FTi-joint

Reactive neural control (see Fig. 2) for phototaxis (po
itive tropism) and obstacle avoidance (negative tropism
behavior is formed by two main modules: the neural > :
preprocessing unit and the modular neural control unit. Th4POSItive tropism). _ _
neural preprocessing unit serves also for sensory fusion. The principle connection weight’; 4 of the network
It filters sensory noise and shapes sensory data to driyé€re manually adjusted with respect to dynamical proper-
the corresponding reactive behavior. The modular neurdi€S Of recurrent neural networks as follows. First, the self-
control unit is used for locomotion generation of the COnnection weightsV, , of the output neurong), , were
walking machine. It coordinates leg movements and cafanually tuned to derive a reasonable hysteresis interval
generate omnidirectional walking. The details of these twd®" the input space. That is the width of the hysteresis is

neural units are described in the following sections. proportional to the strength of the self-connections (see
[9], [10] for details). In this case, the hysteresis effect

Reactive neural control determine_s the _turning anglg for avoiding obstacles ar)d
Neural Modular neural approaching a Ilg.ht source, i.e., the wider the hysteresis,
preprocessing control the larger the turning angle. Both self-connections are set to
.>| Motorsl . . .
2.0 to obtain a suitable turning angle of the AMOS-WDO06
(see Figs. 4a and c). Then, the recurrent connecfins
between output neurons were symmetrized and manually
adjusted to -3.5. Such inhibitory recurrent connections are
. < ;
Environment formed as a so-called even loop [11], which also shows
hysteresis phenomenon (see Fig. 4b). In general conditions,
Fig. 2. Diagram of reactive neural control. The controller acts as a”only one neuron at a time is able to produce a positive
artificial perception-action system, i.e., the sensor signals go through the . . .
neural preprocessing into the modular neural control which command®UtPut, while the other one has a negatw? Outpl..lt, ?—nd vice
the actuators. As a result, the robot's behavior is generated by interactingersa. However, both neurons can show high activation only
with its environment in a sensorimotor loop. if their inputs are very high, e.gx 0.64 (see Fig. 4b). This
guarantees the optimal functionality for avoiding obstacles

All neurons of the network are modeled as discrete-timé' €scaping from corner and deadlock situation;.
non-spiking neurons. The activation and output of each The sensor valuesLDR;» and IR;, . 4) are linearly

neuron are governed by (1), (2), respectively: mapped into the closed intervél-1,+1]. For the LDR
sensors, valued DR, » = —1.0 refers to darkness and

" LDR, » = +1.0 to the maximal measurable light intensity.
Z Wi0;(t)+B; i=1,...,n, (1) The IR values/ R .. 4 are—1.0 if no obstacle is detected
j=1

Sensors|

and value+1.0 represents that an obstacle is near. The
o; = tanh(a;), (2) Mmean vglue_ of the two left IR sensor signaﬁ%@A) is used
as the first input {nput1) to the network while the second
where n denotes the number of unitg, their activity, input (Input2) corresponds to the two right IR sensors
B, represents a fixed internal bias term together with g/R; 7). Parallelly, the left and right LDR sensor signals
stationary input of neurori, W;; the synaptic strength are provided as the thirdI{put3) and forth (nput4)
of the connection from neurop to neuroni, ando; the  inputs indirectly passing through hidden neurofs ».
output of neurori. Input units, e.g., sensory neurons, areConcerning the priority of the sensory signals, here the
configured as linear buffers. IR sensor signals are desired to have higher priority than



the LDR sensor signals. That is if obstacles and light are

detected at the same time, the neural preprocessor has to o

elicit IR sensor signals and inhibit LDR sensor signals. As
a consequence, the obstacle avoidance behavior will be exe-
cuted instead of the phototaxis. The phototaxis is performed
if and only if the obstacles are not detected. To do so, we
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set the connection weightd’s ¢ from Inputl and Input2 . s Ravej[']Rw T o N Ravejl']'*a»‘* S
to the output units to higher values than the onEsg ©1 02
connecting between the hidden and output neurons. Thus, °1 t <4 o~ 4
they were set tdV; ¢ = 7.0 and W7 g = 4.5. To ensure Zog 19 &F oo plg IS
the optimal functionality for priority setting of the sensory ° | F i i °] ™ F
signals, we additionally project two inhibitory connections '
Wy 10 from Inputl and Input2 to H; and Hs, respec- = OZ —— o 01 —
tively, together with a bias tern® at each of the hidden RawLDRy RawLDRy
neuron. These parameters were again manually tuned and =light source, ‘% = abstacle, ﬂ = six-legged walking machine
were, as a result, set 19 1 = —2.0 and B; = —1.5.

; ’ Fig. 4. (a), (b) Hysteresis domain dhputl (Raw — I R3 4) for the

Furthermore, two inhibitory synapsé$i; > were extra
integrated and set with the same strength1®f s, i.e.,

output neurorO2 of the network while the other output neuréh shows
low ~ —1 and high~ +1 activation, respectively. All other sensory

—4.5. These inhibitory cross connections cause that afnputs Raw —IR1 3, Raw — LDR;, and Raw — LD Ry) are fixed to

=~ —1 for case (a) buk +1 for case (b). In case (a), the machine will

ac,tlvated .ou'tpu't neuron (shgwmg high aCtlvatlw+1,) walk forward F' (drawing on the left) as long a®; and O2 give low
driven by its ipsilateral LDR signal can become deactivatedtivation but it will turn rightTR as soon asaw — I R3 4 increases to
(showing low activation~ —1) if the contralateral LDR values above-0.55 where onlyO2 shows high activation meaning that

: : : : ere is an obstacle on its left (drawing on the right). However, it will
Slgnal becomes activated (See Fig. 4d)' An important eﬁec‘r{:eturn to walk forwardF when Raw — I R3 4 decreases to values below

of this cross inhibition is to obtain effective phototaxis; i.e., —0.68 meaning that no obstacle is detected. In case (b), the machine will
the machine is able to walk forward during performingturn left TL (i.e., it avoids an obstacle on its right although it detects a

: . ht source in front of it, compare drawing on the left) as long as the
phOtOtaXIS and flna”y can approach to the source. On th alue of Raw — I R34 is below0.64 whereO; has high activation while

other hand, without these cross inhibition the machine willo, shows low activation. Increasing the value Btw — I R34 above
only try to turn toward the source without performing 0.64 causesO: to become active. The machine then walks backward
forwards motion. As a consequence such a behavior migtﬁ' i.e., it detects obstacles on both sides (drawing on the right). It will

g . turn to turn leftTL again if the value ofRaw — IR3 4 is below
have difficulties to approach the source. 0.54. (c) Hysteresis domain dfnput3 (corresponding tdRaw — LD R5)

Note that one can optimize the network parameters, fofor O1 with the other inputs fixed tex —1. O1 shows high activation

; ; ; ; if Raw — LDR> increases to values above0.25 and returns to low
Instance by using an eVOIUtlonary algomhm [6]’ [12] but activation if Raw — LD R2 decreases to values below0.4 while O2

for our purposes here, it is good enough. The completehows low activation in all cases. As a result, the machine will turn left
preprocessing network and its hysteresis effect are showhL (drawingdon }hi right) whel?]h shows hiQIE afctivati%n(?eaning tha;

; ; ; it turns toward a light source otherwise it walks forward (drawing on the
in Figs. 3 and 4, respectively. left). (d) Hysteresis domain oRaw — LDRy for Oz with the other
inputs fixed asRaw — IR1,2,3,4 ~ —1 and Raw — LDR; =~ +1.
Here, Oy shows low activation only if the value aRaw — LDR> is
higher than—0.13 while O; gives low activation all the time. However,
O will provide high activation if Raw — LD R> decreases to values
below—0.28. As a consequence, the machine will turns toward the source
(drawing on the left) and then it is able to walk forward if the source is
almost in front of it (drawing on the right) causing high activation of both
LDR signals Raw — LDR; 2). Finally, it can approach to the source.
In reverse cases, iRaw — IRy 2 and Raw — LDR; are varied while

the other inputs are fixed, they will derive the same hysteresis effect as
Raw — IR3,4 and Raw — LD R2 do.

Left IR inputs Right IR inputs

turning direction of the walking machine by utilizing the
hysteresis effect. Applying the output signal®@f and O,
I, | _ forth dination of osi (see Fig. 7) to their target neuroiig and /5 in the neural
B o e e e POl modle (see Fig. &), the walking machine can
O1.2 are directly fed to input neuronk, 5 of the modular neural control  @utonomously perform phototaxis and obstacle avoidance
(see Fig. 5) to stimulate the phototaxis and obstacle avoidance behavior gfehavior through a sensori-motor loop with respect to
the AMOS-WDO06. Note that; » are the hidden neurons of the network. environmental stimuli. In other words, the Walking machine
will turn toward, approach, and eventually stop near a light
This structure and its parameters cause the network tsource by determining a threshold of the mean value of the
filter, prioritize, and coordinate the different sensory inputsleft and right LDR sensor signals\{LDR). At the same

It can even determine the turning angle as well as théime, it will also avoid obstacles if they are detected.

Left LDR input
Excitatory synapse —<

Right LDR input
Inhibitory synapse —@



Neural preprocessing module

B. Modular neural control

Modular neural control for locomotion of the walk- Input neurons
ing machine consists of three subordinate netwbors by Hidden neurons
modules (colored boxes in Fig. 5): a neural oscillator '
network, two velocity regulating networks (VRNs), and
a phase switching network (PSN). The neural oscillator
network, serving as a central pattern generator (CPG)
[5], generates periodic output signals. These signals are
provided to all CTr-joints and FTi-joints only indirectly
passing through all hidden neurons of the PSN. TC-joints
are regulated via the VRNs. Thus, the basic rhythmic leg
movement is generated by the neural oscillator network and
the steering capability of the walking machine is realized AL AGLAW AWLAL
by the PSN and the VRNs. Fig. 5 shows the complete Ftjoints Crjoints TCioints

network structure together with the synaptic weights of the  exiaorysynapse — ' Chi
Inhibitory synapse —@ @ *

connections between the controller and the corresponding @.

motor neurons as well as the bias term of each motor 2 Q) @

neuron. These synaptic weights and all bias terms were OO

manually adjusted to obtain an optimal gait; i.e., a typical @®

tripod gait where the diagonal legs are paired and move s® L

synchronously. Fig. 5. The modular neural control of the six-legged walking machine

This modular neural control can generate different walk-AMOS-WDO06 consists of three different neuron groups: input, hidden,

ing patterns which are controlled by the four input neurongnd output. Input neurons are the neurons used to control walking
direction (I2,....5) and to trigger the protection reflexly(). Hidden

127~~~,5- Furthe".more! a Self'prOt_eCtive. ref?egan be acti- neuronsH are divided into three modules (CPG, VRNs, and PSN (see
vated via the input neurof; which will excite TR; and  [9], [10] for details)). Output neuronsI(R, TL, CR, CL, FR, FL)

TL, joints and all CTr- and FTi- joints and inhibit the directly command the position of servo motors. Abbreviations are: BJ = a
backbone joint, TR(L) = TC-joints of right (left) legs, CR(L) = CTr-joints

remai.ning TC'jOin.tS' Appropriate input parameter S?ts fOrof right (left) legs, FR(L) = FTi-joints of right (left) legs. All connection
the different walking patterns and the reflex behavior aretrengths together with bias terms are indicated by the small numbers

presented in Table | where the first column describes thgxcelot some parameters of the VRNs given by A = 1.7246, B = -2.48285,
= -1.7246. The location of the motor neurons on the AMOS-WDO06 is

desired actions in accordance with five Input parameter§hown in the lower picture. Note that describing the controller driving
shown in the other columns. Abbreviations af@):R and  the machine also with the backbone joint will go beyond the scope of
BDiR = forward and backward diagonal motion to the this article. Thus, the motor neuron controlling the backbone joint BJ
. . R . is not activated; i.e., the backbone joint functions as a rigid connection.
right, FDiL and BDiL = forward and backward diagonal pjowever, it can be modulated by the periodic signal via the PSN or
motion to the left,LaR and LaL = lateral motion to the VRNs to perform an appropriate motion, e.g., helping the machine during
right and the left. Note that marching is an action where®limbing over obstacles or performing other tasks.

all the legs are positioned and held in a vertical position

and support is switched between the two tripods. TABLE |
As shown in Table I, this neural controller can produce!NPUT PARAMETERS FOR THE DIFFERENT WALKING PATTERNS
at least 12 different actions with respect to the given inputs. AND THE REFLEX BEHAVIOR.

For all cases,/; and I3 are set as binary values (0 or
1) which then activate or inhibit the movement of all

Actions I> I3 Iy I5

~
iy

joints and control directions of diagonal or lateral walking, Forward 0 1.0 1,0 —1.0 -1.0
respectively. On the other hand, can vary between 0.0 ?3%'“53%? 8 11-8 11’8 711% . (1)0
a_nd 1.0 which suppresses the amplitude of the periodic tymiet o 10 10 1.0 1.0
signal of the FTi-joints; i.e., the larger the value &f Marching 0 1.0 1,0 0.0 0.0
the lower the amplitude. As a consequence, the walking Eg'ig 8 8~8 8 *1100 *1160
machine will perform a very small step in the lateral or | g 0 00 0 0.0 0.0
diagonal direction or no step at allif is set to 1.0. Setting FDIL 0 00 1 —-1.0 —-1.0
I, to negative values might cause unstable walking. BDiL 0 00 1 10 1.0

: LaL 0 00 1 0.0 0.0

Furthermore, varying, and /5 between—1.0 and 1.0 Reflex 1 00.10 1,0 -1.0.10 -10..10

(see Fig. 6) while other input parameters are fixad< 0,
Iy = 1.0, andl3 = 1 or 0), the amplitude of the periodic

1Here, we discuss only main functions of the network. A more complete
description of each subordinate network is given in [9], [10]. signals of the left and right TC-joints will be regulated. As
2The action is triggered when the machine is turned into an upsidegy consequence the machine can perform straight and curve
down position. As a consequence, it stands still in this position as lon . ’ . . .
as the stimulus (UD signal) is presented (not shown here but see [10] fo alklng in forward and backward directions, marChmg- and
details). spot turning in different radians (orientational motions).



According to these parameter settings, it is appropriatén Fig. 7). Note that in the experiments the machine walks
and simple to generate the phototaxis and obstacle avoidvith one gait type where the diagonal legs are paired and
ance behavior because such behavior corresponds maimyove together; e.g.R;, R3, and L, step in phase while

to orientational motions rather than diagonal or laterathe remaining legs step out of phase. Such that the motor
motions. Thus, in the robot walking experiments presentedignals ofR;, R3, andL, have similar patterns and perform

in the following section, the input parametefs 5 are 180 degrees out of phase with other motor signalg of
fixed as described above where the diagonal and laterdt,, and Ls.

motions as well as the reflex action are deactivated. On

1.0
the other hand/ss will be stimulated by preprocessed g,
. . -
sensory signals coming from the neural preprocessor (see o
Fig. 3). As a result, the walking machine will walk forward ~ “*° LDR; LDR,
. . . . . . -1
if no obstacle or light is detected and it will turn right or R B -
left with respect to the sensory signals, e.g., turn toward a « *9| | a
. . . . 0.0y
light source (positive stimuli) but turn away from obstacles 5 J
(negative stimuli). It will also perform marching as soon 10 Ros Pl i
. . 1.0 —
as it closely approaches a light source. o] o] o o LId
E— 0.0
TL=Tumleft 1 3 .04
/02
TR = Turn right 5 750 300 150 150
Time [steps] Time [steps] Time [steps]
F = Forward
FTIR FTL F B TR F F TL F S FTRTL TR F S
B = Backward 1.0]
to the right = o9
BL = Backward
(0 the lef 2 TR 29
- 1.0t
FR= It:cgnt’\rqveal;(ijght FR 1.0
FLefoperd, 14 : ' .
-1 0 1 = 00
| 0.5
5
-1.0¢
1.0]
Fig. 6. Plot of the input spacd/{, I, see Fig. 5) which is classified into 05
four main areas. For input values in a dark square atebej), the walking 5“00
machine will perform spot turning to the left with different radians while _OstWUUUW MUWUW\
a white square area fih) is for the right turn. In light gray triangle areas 0
(gde and geh), they will move forward in different curves to the left and 19
the right and dark gray triangle areas¢ andecf) are for backward to 05
the right and the left, respectively. Additionally, If, and I are varied & o9
along the diagonal linegéc), the machines will walk straight forward 0
(ge) and backwarddc) with different walking speeds. Details on robot A - — e |
. . . 15 1
walking experiments have been presented in [10]. Time [steps] Time [steps] Time [steps]
(a) (b) (c)

Fig. 7.  Sensory and motor signals during performing the reactive
IV. EXPERIMENTS AND RESULTS behaviors. (a) Obstacle avoidance behavior. (b) Phototaxis. (c) Obstacle
This section describes experiments carried out to assea¥oidance behavior and phototaxis (see text for details). Abbreviations
. . are: IRy,....4 = raw IR sensor signalsLDR; > = raw LDR sensor
the ab'“t_y of the reactive n.eural controller to generaFesignals;MLDR = the mean value of the left and right LDR sensor
phototaxis and obstacle avoidance as well as exploratiosignals; O, » = outputs of the neural preprocessor (see Fig.B):=
behaviors. The controller was implemented on a mobildoward; TL = turn lef, TR = turn right, B = backward.S = stop;
. . . . TRy,CR1, FR; = motor signals of the TC-joint, CTr-joint, and FTi-
processor (a PDA) for testing the phyS|Ca| Walklng maChInEfoint of the right front leg, respectively]’L; = the motor signal of the
in a real environmedt We encourage readers to watch TC-joint of the left front leg.

the video clips of the real robot walking experiments
at http://www.nld.ds.mpg.de/fporamate/ICIS. Here, we re- Fig.7a shows the situation where the walking machine

port .the real tl'me data of sensory and mo_tor S|gnaI§ of t.h‘f)erformed only obstacle avoidance behavior. It can be seen
walking machine during performing reactive behaviors NG At TR, is turned into the opposite direction (light gray

different situations (see Fig. 7). Recall that generating th%rea) if the left IR sensorsl s 4) detects the obstacle;
reactive behaviors which correspond to orientation mOtion%orre,spondinglyFLl is turned into the opposite directior,1
will effect only_ the_ movemgnt of the .TC_—joints (compare (dark gray area) when the right IR sensor signakys)
TR, and.Jle n .F'g' 7 yvh|le the periodic movement of is active. As a consequence, the walking machine was
the CTr-joints W'”.r.efna'” ‘.‘”Ch"’!”g.e‘?' (comp LN aple to turn away from an obstacle and finally avoid
Fig. 7) and the FTi-joints will be inhibited (comparer, it. In other words, it turned righTR if there was the

3During experiments, we use battery packs for powering the robolObStaCIe on its le_ft a_md Y'Ce versa OtherW'S_e it walked
system which can run up to 35 minutes. forwardF. In special situations, e.g., here walking toward a



wall, IR sensor signals on both sides were simultaneouslytilizing hysteresis phenomena of such a network, it can
active. Thus,TR; and T'L; were reversed into another filter sensory noise and combine different sensory signals
directions which causes the machine to walk backwardo stimulate the desired positive and negative tropisms
B. During walking backward the right IR sensor signal of the walking machine. The modular neural control, on
became inactive while the left one was still active. As athe other hand, performs as a locomotion generator. It
result, the active signal drove the machine to turn rightwvas constructed by integrating three different functional
TR until; eventually, it was able to avoid the obstacle andneural modules: the neural oscillator network, the velocity
then continued walking forward'. regulating networks, and the phase switching network. The
Fig.7b presents the situation where the walking machin@eural oscillator network acts as a CPG for basic rhythmic
detected a light source and no obstacles appeared aroulety movements while controlling different walking patterns
it. It can be seen thaf'L, is turned into the opposite is done by the velocity regulating and the phase switching
direction (dark gray area), if the left LDR sensdrl{R;)  networks. This modular neural control can produce at least
detects the source. On the other hand, if the right LDRL1 different walking patterns and a self-protective reflex by
sensor signall{DR;) is active,TR; will be reversed (not using five input neurons. Coupling the neural preprocessing
shown). During turning toward the source, both LDR sen-with the modular neural control leads to a so-called reactive
sor signals got high activation the result of which enablecheural control. It has been implemented on the embedded
the machine to walk forward®. After that the walking system (mobile processor) of the walking machine. As
machine approached the source and eventually stofpeda result, the walking machine can autonomously perform
nears it by marching if the amplitude of the mean valuedifferent types of tropisms, like phototaxis and obstacle
of the left and right LDR sensor signald LD R becomes avoidance behavior using the sensorimotor loop. The pro-
larger than a threshold value (here, 0.94). This results iposed neural technique has been shown to be adequate for
the motor signals of all TC-joints being automatically setgenerating locomotion and various reactive behaviors of

to 0.0.

Fig. 7c demonstrates the situation where an obstacle was
detected during performing phototaxis. At the beginning,
the walking machine walked forwarE where O, , were

the walking machine.
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inactive & —1) and then turned toward the source as soorf-oundation (Deutsche Forschungsgemeinschaft DFG).

as one of the LDR signal shows high activation (here,
LDR; meaning that the source was on its right). It turned
right by inverting the signals of all right TC-joints (compare
TRy, light gray area). While turning toward the source,

the machine detected the obstacle on its right whéte, [2]
became active. As a consequence, it turnedIidgftto avoid
the obstacle (see the inversion of the motor signal' 6f, 13]

dark gray area) although it still detected the source. After
avoiding the obstacle it then again turned toward the sourc%
and finally stopped in front of it.

As demonstrated, the reactive neural controller is suitable
to successfully enable the machine to perform phototaxis®l
and solve the obstacle avoidance task. Additionally, theg
controller can even protect the machines from getting stuck
in corners or deadlock situations. This is demonstrated in
a video clip at http://www.nld.ds.mpg.deporamate/ICIS.
Thus, due to this functionality, the walking machines can
autonomously perform exploration.

(7]

(8l
V. CONCLUSIONS

The six-legged walking machine AMOS-WDOQ6 is pre-
sented as a reasonably complex robot platform for studying®!
sensorimotor coordination problems of many degrees-of-
freedom systems, for conducting experiments with neuralo]
controllers, and even for testing artificial perception-action
systems.

In this study the controller of the walking machine was|[11]
designed purely as a neural network. It consists of tWCLZ]
neural modules: neural preprocessing and modular neurJ1
control. The neural preprocessing unit obtained by a small
recurrent neural network functions as a sensor fusion unit!3!
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