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Abstract— The function of the locomotor system in human
gait is still an open question. Today robot bipeds are not able
to reproduce the versatility of human locomotion. In this article
a robotic knee joint and an experimental setup are proposed.
The leg function is tested and the acquired data is compared
to human leg behaviour in running observed in experiments.

Index Terms— Biomimetics, Central pattern generators,
Biologically-inspired robots, Bipeds, Passive joints.

I. INTRODUCTION

The purpose of this article is 1) to prove biomechanical
concepts of human running in a robotic testbed, 2) to show
how such a biomimetic leg design can be controlled based
on a central pattern generator and reflexes. To achive these
goals, we implemented a two-segmented leg capable of
reproducing the experimentally observed knee joint function
with switchable elastic behaviour. The function of the neuro-
mechanical system is analysed by simulating running with
the robotic testbed on an instrumented treadmill.
The paper is organised as follows: in section II the design
of a biologically inspired robot leg and the testbed are
described. Section III explains the neural control of the leg.
The experiments and results are discussed in section IV.
Conclusions and an outlook on future research are given in
the last section.

II. THE BIOMECHANICALLY INSPIRED ROBOT LEG

The conceptual understanding of locomotion in animals
and humans keeps motion scientists and engineers busy since
decades. Stability, robustness and versatility of motion in
nature still outperforms the abilities of technical sytems. State
of the art motion analysis has given insights into kinematics,
kinetics and internal muscle properties (e.g. activation) of
bipedal locomotion [1].
Biped locomotion is an alternating sequence of energy ex-
change. In human running kinetic and potential energy in
flight phase is partially converted into elastic energy stored
in muscles and tendons during stance phase. The use of
intrinsic elastic properties is of vital importance to protect the
mechanical system from damages by impacts [2], to regain
energy [3] and to improve gait stability [4].

A. Biomechanical background

The knee joint in human running is integrating two me-
chanical functions: being resistive (like a spring) in stance
and flexible in swing to provide sufficient ground clearance
[5]. The experimentally identified knee elasticity in fast
human running exceeds 15Nm/o [6] and a high, internally
generated torque would be required to bend the knee in swing
against this stiffness. With disengaged knee stiffness during
swing phase the knee joint is flexing passively due to the
inertia of the shank and the active propulsion of the thigh.
The folded leg facilitates high protraction speed by reducing
the leg’s moment of inertia. As a result, the risk of stumbling
is avoided.

B. Biomimetic approach

To overcome the limited locomotor dynamics of todays
antropomorphic biped robots and gain robustness and effi-
ciency a deeper understanding of biomechanical leg functions
is indispensible [7].
In computer models the effect of compliant leg behaviour was
examined [8], [9]. Thus the control of robot biped running
is challenged by two general issues: protract and retract the
leg alternatively and compensate unwanted energy conversion
through a single hip actuator.
A series of knee joint designs has been proposed, which

implement a switchable knee joint compliance. In contrast
to computer models the complete gait cycle including swing
must be implemented. This requires a testbed, able to sim-
ulate different loading conditions during gait cycle. The
mechanical design is shown in Fig.1. A DC-motor drives
the thigh back and forth. The knee joint is equipped with a
switchable compliant mechanism consisting of a leaf spring
that can be engaged and disengaged by a pull-type solenoid.
The solenoid operates in parallel to the joint axis. It locks the
leaf spring to engage during stance phase. The foot is made of
foam and fixed to the shank. During swing phase the vertical
movement of the hip is inhibited by the activation of the
electro-magnet mounted on top of the hip. This mimics the
action of the opposite leg not represented in the current setup.
During stance phase, in contrast, the magnet is turned off and
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Fig. 1. Scheme of robotic leg and testbed.

the hip can move vertically (Fig.1). An elastic strap spans the
hip joint connecting frame and shank. This causes a deceler-
ation of the shank in the final phase of hip joint flexion. (see
http://www.nld.ds.mpg.de/ poramate/ROBIO09/Bioleg.mpg).

Fig. 2. Leg mounted on instrumented treadmill including DC-motor for hip
motion, knee joint with leaf spring (disengaged) and locking mechanism.

III. NEURAL CONTROL OF THE BIOMECHANICAL LEG
SYSTEM

To control the biomechnical leg system described above,
we employ modular neural control [10] with a reflex mech-
anism [11]. However, different methods can be applied but
this modular neural control is selected in order to provide
the basic control structure to the system where a neural
learning mechanism for synaptic plasticity could be simply
integrated for adaptive walking (not shown but see [12]).
Furthermore, this controller has been successfully applied to
control different kinds of walking machines [10]. Here it is
used to activate hip movement while the reflex mechanism
serves to control a pull-type solenoid at a knee joint as well
as a loading/unloading device. The complete neural control
network linking to the biomechanical leg system is shown in
Fig. 3.

The modular controller consists of three subordinate mod-
ules: a neural oscillator network module serving as a cen-
tral pattern generator (CPG) [13] (Fig. 3A), a neural CPG
postprocessing module (Fig. 3B), and a velocity regulat-
ing network module (VRN, Fig. 3C). The neural oscillator
network produces two periodic output signals. Here only
one signal is used to control an active hip joint indirectly
passing through the neural CPG postprocessing module and
the VRN module. Thus, the basic rhythmic leg movement is
generated by the neural oscillator network while the neural
CPG postprocessing unit and the VRN are for shaping the
CPG signal. Additionally, the VRN can also regulate an
amplitude of the signal [10]. The reflex mechanism, on the
other hand, uses a hip angle sensor signal filtered through a
neural preprocessing network to control the activations of a
solenoid and an electromagnet actuator. Submodules of the
modular controller and the reflex mechanism are described
in detail in the following subsections.

All neurons of the control network are modelled as stan-
dard additive non-spiking neurons with their time-discrete
dynamics are given by:

ai(t+ 1) =
n∑

j=1

Wijσ(aj(t)) + Θi i = 1, . . . , n (1)

where n denotes the number of units, ai their activities, Θi

represents a fixed internal bias term together with a stationary
input to neuron i, and Wij the synaptic strength of the
connection from neuron j to neuron i. The output of the
neurons in the neural oscillator and VRN modules is given
by σ(ai) = tanh(ai) while in the CPG postprocessing and
sensory preprocessing modules is governed by threshold and
linear functions, respectively.

A. Neural oscillator network

The neural oscillator network (Fig. 3A) consists of two
neurons O1,2 with full connectivity. Its synaptic weights
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Fig. 3. Neural control of the biomechanical leg system consisting of
the reflex mechanism and the modular neural control formed by three
submodules. (A) The neural oscillator network functioning as a central
pattern generator (CPG). It generates various shapes and frequencies of
the periodic output signals with respect the control parameter I1. Upper
right diagrams present low and high frequency periodic output signals at
the control parameter value of 0 and 0.2, respectively. (B) The neural CPG
postprocessing module transforming the CPG signal into a sawtooth signal
through the threshold neuron P and the integrator unit InU . (C) The velocity
regulating network (VRN) shaping the sawtooth signal and also regulating
its amplitude via the amplitude control parameter I2. The output of this
VRN is finally transmitted to the hip actuator HA of the leg through the
motor neuron H . (D) The biomechanical leg system consisting of the leg and
a loading/unloading device. The leg walks on a force measuring treadmill
for monitoring a ground reaction force during experiments. (E) The neural
preprocessing network of a hip angle sensor. It filters the sensory noise. Its
neuron L works as a linear buffer which maps the raw sensor data onto the
interval [−1, 1]. The mapped signal is filtered through the low-pass filter
neuron N . Eventually the preprocessed sensory signal is used to define the
anterior extreme position (AEP) and posterior extreme position (PEP) in the
reflex mechanism. The AEP and PEP are for controlling the activations of
the solenoid S at a knee joint and the electromagnet actuator M of the
loading/unloading device. All connection strengths together with bias terms
are indicated by the small numbers except some parameters of the VRN
given by A = 1.7246, B = −2.48285, C = −1.7246. W12, and W21 are
modifiable synapses governed by Eqs. 2, 3 while W11,22 and B1,2 are set
to 1.4 and 0.01, respectively.

(W11,22,12,21) and bias terms (B1,2) are selected in accor-
dance with the dynamics of the 2-neuron system [14] staying
near the Neimark-Sacker bifurcation where the quasi-periodic
attractors occur. Such that the network has the capability to
generate various sinusoidal outputs having different frequen-
cies and asymmetric shapes [10], [14]. This kind of asym-
metrical periodic signals is appropriate for walking found in
humans where swing and stance phases differ in duration,
being intrinsically asymmetry [15]. For example, choosing
W11,22 = 1.4, W12 = 0.18, W21 = −0.18, and B1,2 = 0.01,

the network produces very low-frequency sinusoidal outputs
with asymmetrical shapes of descending and ascending. This
low frequency is then used for slow stepping behaviour
(not shown). To increase the frequency, it could be simply
achieved by modifying only W12,21 determined by Eqs. 2, 3
while other parameters are still fixed.

w12 = −I1 − 0.18, (2)
w21 = I1 + 0.18, (3)

I1 is a control parameter which is here varied between 0.0
and 0.51. Note that positive and negative values in Eqs. 2,
3 are given in order to obtain default periodic signals. In
stepping experiments of this study here we set I1 = 0.2
yielding the optimal stepping speed of the leg. Setting I1 =
0 it drives slow stepping behaviour, while increasing to 0.5
it generates fast motion. Nevertheless, we will later apply
additional sensor signals, e.g., accelerometer sensor signal,
to this control parameter to modulate different stepping
frequencies of the leg with respect to terrains.

B. Neural CPG postprocessing

The neural CPG postprocessing module (Fig. 3B) consists
of two hierarchical subunits: 1) the threshold neuron P and
2) the signal integrator unit InU . First P transforms the CPG
signal into a pulse signal after that it passes through InU in
order to obtain continuous ascending (swing phase) and de-
scending (stance phase) signals by using linear interpolation.
Note that a threshold value of P is empirically tuned, as a
result it is set to, e.g., 0.85. Figure 4 shows the CPG signal
after postprocessing by each unit.
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Fig. 4. (A) Output signal of the neural oscillator network O2. (B) Output
signal of the threshold neuron P . (C) Output signal of the signal integrator
unit InU .

C. Velocity regrating network

The VRN (Fig. 3C) is a simple feed-forward network
which was partly constructed and partly trained by using the
backpropagation rule (see [10], [16] for details). The network
output controls the hip joint HA through its motor neuron H .
Because the VRN behaves qualitatively like a multiplication
function [10], it therefore has capability to increase or de-
crease the amplitude of the periodic signal by the magnitude

1Note that increasing I1 beyond 0.5 the oscillator provides too fast
oscillating signals for the leg system.
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of the input I2. Consequently, the stepping speed of the leg
will be regulated, i.e., the higher the amplitude of the signal
the larger the step length leading to faster motions (not shown
in the current set of experiments but see [10]). Furthermore,
due to the nonlinear characteristics of the network, it also
shapes the postprocessed CPG signal resulting to smooth
motion (Fig. 5B). For stepping experiments here, we set I2 to
1.0. However, we will later apply additional exteroceptive or
proprioceptive signals to modulate stepping speed and even
to stop the motion through I2 (Fig. 5C).
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Fig. 5. (A) Output signal of the neuron V7 at I2 = 1. (B) Second derivative
of the output signal of the neuron V7 defining acceleration of motion. The
zoom window shows that the leg decelerates at the beginning of a stance
phase and afterwards it slightly accelerate to appropriately push forwards
resulting in smooth motion. (C) Output signal of the neuron V7 at I2 = 0.
Gray areas define a swing phase while white areas mean a stance phase.

D. Reflex mechanism

The reflex mechanism (Figs. 3D and E) is controlled by
an afferent signal, which is elicited by the angle sensor
of the hip joint HA. The raw sensory signal (Fig. 6A) is
linearly mapped onto the interval [−1, 1] at the neuron
L and then filtered through the linear recurrent neuron N
performing as a low-pass filter. Afterwards the preprocessed
sensory signal (Fig. 6B) directly controls the activation of the
solenoid S and the electromagnet actuator M (Fig. 6C) of the
loading/unloading device with respect to the AEP (Anterior
Extreme Position, see Fig. 3D) and the PEP (Posterior
Extreme Position, see Fig. 3D). That is the solenoid and
the electromagnet actuator are deactivated as soon as the hip
movement attains the AEP. As a result, the solenoid locks a
knee spring while the electromagnet releases the leg to touch
a ground and a stance phase begins. On the other hand, if
the leg retracts until it reaches the PEP, the solenoid and the
electromagnet are activated such that the knee spring is free
and the leg is held in order to start a swing phase. The AEP
and PEP are set to 65 and 100 degrees. These parameters are
obtain from the study of human walking [17].

It is important to note that the neural controller could be
extended for controlling two legs [10] where the other leg
will receive a signal either from the output neuron O1 of
the oscillator or using a delay unit determining a phase shift
between legs.

-0.8

0.0

0.8

O
u
tp

u
t 

L

-0.8

0.0

0.8

-0.8

0.0

0.8

(A) (B) (C)

O
u
tp

u
t 

N

S
 a

n
d

 M
 s

ig
n
a
ls

100 200 300
Time [steps] Time [steps] Time [steps]

200 300 400 500 600

-0.8

0.0

0.8

200 300 400 500 600

-0.8

0.0

0.8

L
o
w

_
p
a
ss

_
a
n
g
le

 s
e
n
so

r_
2

X Axis Title

-0.8

0.0

0.8

 

200 300 400 500 600

 

200 300 400 500 600

-0.8

0.0

0.8

L
o
ck

in
g
_
u
n
lo

ck
in

g

X Axis Title

200 300 400 500 600

 

-0.8

0.0

0.8

 

100 200 300 100 200 300

Fig. 6. (A) Output signal of the neuron L. (B) Output signal of the low-
pass filter neuron N . (C) Signal controlling the solenoid S and electromagnet
actuator M .

IV. EXPERIMENTS AND RESULTS

A. Methods

To validate the concept the implemented network has to
maintain two mechanical functions:

1) stance: engage knee spring, apply load on the leg and
retract thigh

2) swing: disengage knee spring, unload the leg and
protract thigh.

The leg operates on an instrumented treadmill (TAR.EI,
HEF Tecmachine, Andrezieux Boutheon, France) with force
sensors. The speed of the treadmill is adjusted manually to
0.6m/s, thus a smooth touch-down can be observed [18].
For demonstration four subsequent complete gait cycles are
choosen for this preliminary study that was conducted to
proof not only the mechanism but also the experimental setup
(Fig.7).

The measured vertical ground-reaction-force (GRF) data

1 2 3

4 5 6

Fig. 7. Gait cycle shown in six frames captured with high-speed imaging:
(1) late stance, spring engaged (2) early swing, knee bend passively (3)
mid-swing, accelerated shank (4) late stance, knee extending (5) anterior
extreme angle, knee extended (6) retraction before touch-down. See also
video at http://www.nld.ds.mpg.de/∼poramate/ROBIO09/BioLeg.mpg.

contains noise caused by the eigenfrequency and its harmon-
ics of the treadmill. The data is processed to eliminate linear
drift by approximating and substracting a linear drift function.
Noise is reduced applying a low pass filter. The normalised,
vertical center-of-mass (CoM) excursion is calculated by
integrating the processed force data twice. The touch-down
is defined as the time, when the force starts to rise. The
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CoM-position at touch-down is considered to be the rest-
length of the spring. Position and force are normalised to rest
length. The spring-like behaviour in stance is characterised
by a vertical leg stiffness determined through linear fitting.
The spring constant is calculated as follows

c =
F

CoMrl · CoMn
[N/m] (4)

where CoMrl is the spring rest length and CoMn is the
normalised change in length of an equivalent linear spring.

B. Results

The filtered data shows two clearly distinguishable phases
- a sinusoidal, single hump force peak in stance and no
force in swing. Adequately the CoM descents towards its
lowest position at about midstance and ascents beyond lift off
until reaching the apex at about mid-flight as calculated by
integrating (Fig.8). The force amplitude varies slightly as well
as the touch down height. The CoM-motion is not calculated

Fig. 8. Measured vertical ground-reaction-force (GRF) and calculated
center-of-mass (COM) motion over time

correctly in flight-phase due to the use of the electro-magnet.
In Fig.9 force in stance is plotted versus CoM-motion for
serveral cycles. Except for the first step, the vertical force-
displacement curves appear to be almost linear indicating
a spring-like leg behaviour during stance. Therefore, the
vertical leg stiffness can be approximated by linear regression
(kvertical < −0.978, R2 > 0.956 for steps 1-4). Beside the
envisioned spring-like leg function during stance phase, also
the free flexion of the knee was steadily provided by the
proposed mechanism. (Fig.9).

C. Discussion

This paper addresses a mechanism mimicking the leg func-
tion in human running characterised by elastic leg function
in stance and leg flexion during swing phase. The results
show, that the proposed compliant knee mechanism is able
to mimick the knee function observed in human running.
A compliant behaviour in stance is proven experimentally
(Fig.9). Sufficient knee flexion for ground clearance was

Fig. 9. Normalised force versus normalised CoM-motion and linear fit
(fitted spring rate [N/m] in legend)

steadily observed using only passive dynamics of the seg-
mented leg. Furthermore it could be shown, that mechanical
devices inspired by biomechanical findings may be validated
using gait analysis techniques. This analysis may include the
measured ground reaction forces (in this study only vertical
forces are used). In future kinematic data (e.g. joint positions
and velocities) will allow a direct comparison to human gait
data.
In the next steps the proposed mechanism will be im-
proved to cope with disturbances and gait changes. This
equally requires to develop control algorithms appropriate
and sufficient to fully benefit from the underlying mechanical
properties of the biologically inspired locomotor systems.
The proposed catch and hold mechanism is characterised
by the small amount of energy needed for switching. The
biological observed behaviour to engage or disengage only
in unloaded state was intentionally implemented and differs
from other switchable compliant mechanisms. The instanta-
neous excursive change in knee stiffness, well motivated by
biomechanical findings, is essential to generate and reproduce
the biologically observed behaviour.

V. CONCLUSIONS

The combination of passive compliant mechanisms with
actuated joints improves the legged system. The described
compliant system can absorb the impact at touch-down
without affecting the mechanical integrety. Experimentally
observed force patterns indicate that systems using switchable
compliant knee mechanisms are able to better reproduce
human running motion. The experimental setup is capable
to generate data that can be compared with human data. This
is a promising approach to evaluate biological inspired mech-
anisms. Both, the leg mechanism as well as the experimental
setup are still not completely fulfilling the expectations. A
further improvement of both is inevitable in terms of free
timing for engaging the spring in case of disturbances for
the mechanism and better three-dimensional force resolution
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as well as optical motion capturing for the experiments.
The described work is a first step towards the translation of
biomechanical concepts and models into technical mecha-
nisms and systems. Aiming to build stable and robust legged
systems capable of exploring their own mechanics using
control algorithms, the proposed validation method will be
of increasing importance to proof theoretical concepts of
dynamic and kinematic behaviour in legged systems.
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