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Abstract: The ability to quantify temporal information on the scale of hundreds of milliseconds is critical towards 
the processing of complex sensory and motor patterns. However, the nature of neural mechanisms for temporal 
information processing (at this scale) in the brain still remains largely unknown. Furthermore, given that biological 
organisms are situated in a dynamic environment, the processing of time-varying environmental stimuli is intricately 
related to the generation of cognitive behaviors, and as such, an important element of learning and memory. In order to 
model such temporal processing recurrent neural networks emerge as natural candidates due to their inherent dynamics 
and fading memory of advent stimuli. As such, here we investigate recurrent neural network (RNN) models driven by 
external stimuli as the basis of time perception and temporal processing in the brain. Such processing lies in the short 
timescale that is responsible for the generation of short-term memory-guided behaviors like complex motor pattern 
processing and generation, motor prediction, time-delayed responses, and goal-directed decision making. We present a 
novel self-adaptive RNN model and verify its ability to generate such complex temporally dependent behaviors, 
juxtaposing it critically with current state of the art non-adaptive or static RNN models.  
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Taking into consideration the brain’s ability to undergo 

changes at structural and functional levels across a wide 
range of time spans, we make the primary hypothesis, 
that a combination of neuronal plasticity and homeostatic 
mechanisms in conjunction with the innate recurrent 
loops in the underlying neural circuitry gives rise to such 
temporally-guided actions [1,2]. Furthermore, unlike 
most previous studies of spatiotemporal processing in the 
brain [3], here we follow a closed-loop approach (Fig.1). 
Such that, there is a tight coupling between the neural 
computations and the resultant behaviors, demonstrated 
on artificial robotic agents as the embodied self of a 
biological organism. Using a RNN model of rate-coded 
neurons starting with random initialization of synaptic 
connections, we propose a learning rule based on local 
active information storage (LAIS). This is measured at 
each spatiotemporal location of the network, and used to 
adapt the individual neuronal decay rates or time 
constants with respect to the incoming stimuli. This 
allows an adaptive timescale of the network according to 
changes in timescales of inputs. We combine this, with 
mathematically derived, generalized mutual information 
driven intrinsic plasticity mechanism that can tune the 
non-linearity of network neurons. This enables the 
network to maintain homeostasis as well as, maximize 
the flow of information from input stimuli to neuronal 
outputs [4]. These unsupervised local adaptations are 
then combined with supervised synaptic plasticity in 
order to tune the otherwise fixed synaptic connections, in 
a task dependent manner. The resultant plastic network, 
significantly outperforms previous static models for 
complex temporal processing tasks in non-linear 
computing power, temporal memory capacity, noise 
robustness as well as tuning towards near-critical 

dynamics. These are displayed using a number of 
benchmark tests, delayed memory guided responses with 
a robotic agent in real environment and complex motor 
pattern generation tasks. Furthermore, we also 
demonstrate the ability of our adaptive network to 
generate clock like behaviors underlying time perception 
in the brain. The model output matches the linear 
relationship of variance and squared time interval as 
observed from experimental studies. 

 
Having achieved such a model of spatiotemporal 

information processing, we first demonstrate the 
application of our model on behaviorally relevant motor 
prediction tasks with a walking robot, implementing 
distributed internal forward models using our adaptive 
network [5]. Following this, we extend the previous 
supervised learning scheme, by implementing 
reward-based learning following the temporal difference 
paradigm, in order to adapt the synaptic connections in 
our network. The neuronal correlates of this formulation 
are discussed from the point of view of the cortico- 
striatal circuitry, and a new combined learning rule is 
presented [6]. This leads to novel results demonstrating 
how the striatal circuitry works in combination with the 
cerebellar circuitry in the brain, that lead to robust 
goal-directed behaviors. Thus, we demonstrate the 
application of our adaptive network model on the entire 
spectrum of temporal information processing, in the 
timescale of few hundred milliseconds (complex motor 
processing) to minutes (delayed memory and decision 
making).  

Overall, our results affirm our primary hypothesis that 
plasticity and adaptation in recurrent networks allow 
complex temporal information processing, which 
otherwise cannot be obtained with purely static networks. 
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Furthermore, homeostatic plasticity and neuronal 
timescale adaptations could be potential mechanisms by 
which the brain performs such processing with 
remarkable ease.  
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Fig.1 Closed-loop approach to temporal information processing. A constant barrage of time varying 
stimuli perturb the resting state of the brain leading to non-trivial, non-linear, and highly distributed 
computations in neuronal networks in the brain. Such computations also occur over a wide distribution of 
timescales. With learning and adaptation, cognitive behaviors and complex sensory motor outputs, 
requiring robust processing of the temporal information, can be obtained. Such behaviors typically lead to 
changes in the environmental conditions, which in turn change the incoming stimuli to the brain networks, 
thus closing the input-output loop.  


