
Teaching Hardware Implementation of Neural
Networks using High-Level Synthesis in Less Than

Four Hours for Engineering Education of
Intelligent Embedded Computing

Nan-Sheng Huang
Embodied AI and Neurorobotics Laboratory

Mærsk Mc-Kinney Møller Institute,
University of Southern Denmark, Odense M, Denmark

nan@mmmi.sdu.dk

Jan-Matthias Braun
Embodied AI and Neurorobotics Laboratory

Mærsk Mc-Kinney Møller Institute,
University of Southern Denmark, Odense M, Denmark

j-mb@mmmi.sdu.dk

Jørgen Christian Larsen
Embodied AI and Neurorobotics Laboratory

Mærsk Mc-Kinney Møller Institute,
University of Southern Denmark, Odense M, Denmark

jcla@mmmi.sdu.dk

Poramate Manoonpong
Embodied AI and Neurorobotics Laboratory

Mærsk Mc-Kinney Møller Institute,
University of Southern Denmark, Odense M, Denmark

poma@mmmi.sdu.dk

Abstract—This paper presents the motivation and design of
a mini-course to teach hardware implementation of neural
networks using high-level synthesis (HLS) in less than four hours
for engineering education of intelligent embedded computing.
By standing on the shoulders of giants, the combination of the
real-world problem, decoding the process of neural networks
hardware design and using HLS as hands-on lab, the students
are able to not only pick up the underlying concepts of digital
system design naturally but also implement a real working
neural networks hardware accelerator in person. Thus, the main
contribution of the work is to facilitate the engineering education
of hardware design more engaging and practical.

Keywords—Neural Networks, Hardware Acceleration, FPGA,
High-Level Synthesis, Rapid Prototyping, Intelligent Embedded
Systems, Engineering Education

I. INTRODUCTION

Machine learning (ML) has within the last 5 years become
an important and powerful development within Neural Net-
works (NNs) for a wide variety of problems in many do-
mains. Those could be pattern recognition, signal processing,
image/video processing, classification, prediction, automation
and control systems to name but a few [1]. Plenty of NNs
algorithms are broadly exploited by software developers and
algorithm researchers including Feed-forward Neural Net-
works (FNNs) or Multi-Layer Perceptrons (MLPs), Radial
Basis Networks (RBFs), Recurrent Neural Networks (RNNs),
Convolutional Neural Networks (CNNs) and so on [2]. From
the aspect of the embedded application, the capability enables
IoT devices to evolve as AIoT (the artificial intelligence
of things) which is beneficial to improve the quality and
reduce the cost and risk. Thus, it is trending to develop
intelligent embedded systems by empowering the devices with

the capability of machine learning to process and interpret
plenty of noisy and sophisticated measured data sets for further
prediction.

Despite its impressive performance, deploying NNs on a
low-power real-time embedded system is still a challenging
task due to rich computationally expensive operations. To
tackle the issue, implementation of hardware-accelerated NNs
is a promising solution which can be employed to offload
the embedded processor, increase the overall throughput and
reduce the latency and energy consumption.

Although Hardware Description Languages (HDLs) such
as Verilog, VHDL or SystemVerilog have been extensively
used in digital system design for more than 3 decades, it
still takes significant efforts and time to implement for the
developer with an in-depth understanding of digital hardware
design. The designer architects the desired architecture of
hardware-accelerated algorithm and then capture the digital
circuit behavior by register-transfer level (RTL) or gate-level.
RTL assumes to implement the synchronous logic design
by abstract logic clouds and registers instead of low-level
individual logic gates (NAND, NOR, AND, OR, MUX, FLIP-
FLOP) which are less productive. For example, it usually
consumes several weeks to develop and verify a handcrafted
digital NNs hardware by virtue of RTL as design entry.

From the perspective of engineering education, the steep
learning curve not only consumes students much more efforts
in developing a hardware-accelerated project but also hinders
potential non-hardware background students to learn how to
design hardware accelerator to resolve the system performance
problems. In order to reduce the entry barrier of hardware
design and achieve rapid prototyping, the invention of HLS

978-1-7281-0702-8/19/$31.00 ©2019 IEEE

[3] [4] aims to transform the design process of sophisticated
digital systems by providing a higher level of abstraction than
RTL. HLS leverages software methodologies as hardware de-
sign entry and provides many benefits compared to traditional
RTL design methodology. For example, HLS takes advantage
of the behavioral description in terms of C/C++ to describe
the function of hardware-accelerated algorithm together with
additional compile directives or pragmas specifying the syn-
thesis constraints in both space and time domain to improve
the productivity of hardware design. Hence, it opens the door
for more non-hardware background students who are able to
write C/C++ programs to design hardware further.

This paper presents the design of a 4-hours mini-course to
teach how to design the parallel and pipelined hardware of the
offline trained MLPs by the hands-on lab from on-going EU
project. The only prerequisite for the students is an elementary
knowledge of programming language. In the first hour, the
background of HLS-based hardware design is introduced.
Next, to draw the attention of students, a real-world embedded
brain-computer interface (BCI) research problem using NNs
algorithm is taken as an educational case study. Furthermore,
MLPs algorithm is introduced to figure out the untimed func-
tional behavior. From the aspect of mathematics, the generic
building blocks of MLPs are analyzed. Due to the fact that the
MLPs employs a non-linear activation function, a well-known
numerical method to approximate the nonlinear function is
elaborated. The aforementioned contents are presented in the
second hour. In the third hour, a layered architecture is derived
by utilizing the analyzed generic building blocks. Next, the
implementation is realized by HLS C/C++. Basic HLS C/C++
simulation and synthesis are conducted. Finally, parallel and
pipelined methodology supported by HLS is applied to illus-
trate the process of design-space exploration with quantitative
analysis.

Section 2 provides a brief background overview of HLS and
high-performance hardware design. The proposed mini-course
is described in Section 3. Section 4 discusses the related works.
The paper is concluded in Section 5 with future works.

II. BACKGROUND OF HLS-BASED HARDWARE DESIGN

In the first hour of the mini-course, the following funda-
mental concepts of HLS-based hardware design is introduced.

A. Comparison of C/C++ and HLS C/C++

As shown in the left side of Fig. 1, the C/C++ are general-
purpose software programming languages executed on top of
processors. While programming in C/C++, the code is exe-
cuted sequentially by the underlying computer architectures.
The capability of parallel computations of computer architec-
tures is characterized by various instruction set architectures
(ISAs) including single instruction, single data stream (SISD),
single instruction, multiple data stream (SIMD), multiple in-
struction, single data stream (MISD) and multiple instruction,
multiple data stream (MIMD). For instance, the ARM NEON
instructions are SIMD instructions and the ARM Cortex-M3
processor is SISD architecture. Hence, the SW programmer

can only implement the function of algorithm via C/C++
instead of manipulating customized parallelism. However, as
illustrated in the right side of Fig. 1, HLS also employs the
same C/C++ language but targets to design hardware. The
merit of HLS is that it decouples the design for functionality
and the design for physical hardware architecture. In HDL-
based design, the developer must take into account the two
things together before RTL coding. For the SW C/C++ flow,
the parallelism is determined by underlying computer archi-
tecture instead of customization by the user. In fact, it is a
two-pass flow. In pass-1, the user is dedicated to describing
the behavior of functionality in HLS C/C++. In pass-2, the user
begins to optimize the power, performance, and area (PPA).
From user’s perspective, it greatly reduces the entry barrier
of hardware design by transforming the design of hardware
architecture into the use of compiler directives and pragmas.

Algorithm
Function

C/C++
Compiler

CPU
ISAs

Algorithm
Function

HW PPA
Constraints

HLS
Synthesizer

FPGA
Flow

C/C++
HLS
C/C++

HLS
Directives
/Pragmas

SISD
SIMD
MISD
MIMD

PASS-1

PASS-2

Fig. 1. Comparison of two kinds of C/C++ design flow

B. Parallel and Pipelined Architecture

Parallel and pipelined [5] are design methods of hardware
architecture to optimize the PPA. Performance can be repre-
sented by throughput and latency. Assume that a task can be
allocated and executed by a single processing element (PE) A
with a certain execution time B. Parallel involves duplicated
hardware resource A in space domain to shorten the execution
time B. Pipeline exploits to partition the task into a series
of subtasks and therefore subtasks can be paralleled in space
domain and chained together in time domain to reduce the
execution time B.

C. Computation Bound and Memory bound

Execution of the algorithm mixes both computations such
as add, multiply or compare operation and memory access.
If the bottleneck results from the insufficient bandwidth of
memory access, it is classified as a memory bound issue
and vice versa. Array partition is the general method to
mitigate the memory bound issue by increasing the ports of
memory access in parallel. Fig. 2 demonstrates 3 ways of
array partition. Block and cyclic partition directly slice the
memory array into multiple pieces where each piece has its

own memory port. The difference is the permutation of the
array elements. The behavior of cyclic is interleaved among
multiple divided pieces. For complete partition, the whole
memory array is divided into individual registers which own
the highest parallelism with the price of more area.

M/2-1

0

1

M-1

M/2

M/2+1

M-2

0

2

M-1

1

3

M/2-1

0

1

M/2

M-1

0 1 2 M-2 M-1

block cyclic

complete

Fig. 2. Example of array partition

D. Design-Space Exploration

Hardware design comprises a variety of methodologies such
as pipeline and parallel to achieve target PPA. When it comes
to HLS, it facilitates the implementation process to supports
each method with a sort of adjustable parameters in either
compile directives or pragmas. The design-space exploration
is a kind of closed loop system to iteratively sweep possible
combination of design parameters to obtain the appropriate
result.

III. PROPOSED MINI-COURSE

In this section, we elaborate on the strategy of the proposed
mini-course to demonstrate how to teach to design a working
MLPs hardware in less than 4 hours as shown in Fig. 3.

A. Real World Problem

The on-going Plan4Act project [6] aims to provide new
emerging and fascinating embedded technologies that address
how neural activity, representing high-level cognitive pro-
cesses of planning and mental simulation of action sequences
can be extracted and used to proactively control the smart
home environments. For example, given the use case that a
heavily disabled person comes up with a thought to go to
the bathroom first while arriving home. In general, a normal
person will execute the following three actions in sequences to
fulfill the task A-B-C which A means opening the main door, B
means switching on the main lights and C means opening the

Background
Introduction

Real World
Problem

MLPs Algorithm

Analysis of Generic
Building Blocks

Test-Driven
Development

HLS C/C++
Testbench Coding

HLS C/C++
Simulation

Design-Space
Exploration

HLS DUT
Coding

HLS C/C++
Synthesis

Quantitative
Analysis

Code Re-factoring
for PPA

With Hands-on Lab

2nd

hour

3rd

hour

4th

hour

Fig. 3. Proposed teaching trajectory

1

2

80

B1 B2 B3 110

81

82

90

91

92

100

101

102

109

x1

x2

x80

y1

y2

y9

y10

W 1,81

W 1,82

W 1,99

W B1,81

W B1,82

W B1,90

W 81,91

W 81,92

W 81,100

W B2,91

W B2,92

W B2,100

W 91,101

W 91,102

W 91,109

W 91,110

W B3,101

W B3,102

W B3,109

W B3,110

Linear function Sigmoid function

Input Layer Hidden Layer Output Layer

W 181 x 10 W 211 x10 W 311 x 10

Fig. 4. Architecture of MLPs

bathroom door and light which is a kind of reactive behavior.
The Plan4Act project expects to develop a novel proactive
control algorithm to predict the complete action sequences A-
B-C when obtaining the partial spiking neural data of either
A or A-B to predict the corresponding complete action B-C
or C proactively. One of the sets of non-linear temporal signal
processing algorithm under investigation is MLPs. MLPs are
advantageous for hardware implementation due to the sim-
plicity of highly structured network topology, which allows to
implement them on FPGA with a minimal area, bandwidth and
memory footprint as a real-time embedded device. Therefore,
an offline trained MLPs algorithm in the project is leveraged
as an educational case study of hardware design.

B. MLPs Algorithm

MLPs is a standard type of feed-forward neural network
[7]. As shown in Fig. 4, the selected parameters of offline

trained MLPs comprises 113 neurons distributed to one input
layer, two hidden layers, and one output layer. The input layer
has 80 pass-through neurons and one bias neuron. The aim
of the pass-through neuron is just to transport the external
input to the internal layer without any further operation. For
the bias neuron, it only emits output with input fixed value
one to the next layer. There has a weight connection in
between adjacent layers. The MLPs utilizes the topology of
full connection. For instance in Fig. 4, all neurons in the
input layer is fully connected, meaning that each input neuron
connects to all neurons in the next layer. Apart from that,
for the neurons located in the hidden layers and output layer,
all outputs from all neurons of previous layers are multiplied
with associated weight value and then accumulated to dump
consolidated output to the neuron. The output of the neuron
is then evaluated by the corresponding activation function. In
this case, the neurons of hidden layers are equipped with linear
transfer function and the neurons of output layers are designed
with the sigmoid non-linear function. For bias neurons and
input neurons, they do not have an activation function. From
the viewpoint of data stream flow, the input data is regularly
processed by each neuron and then forwarded to the next layer
without any feedback loop. Thus, the computation depends
only on the output of the previous layer which implies being
beneficial to streamline processing without additional buffers.

Y 1 = X ·W1 = X ′ ·W1′ +B1′ (1)

Z1 = f(Y 1) (2)

W180,10 =

w11,81 w11,82 · · · w11,90
w12,81 w12,82 · · · w12,90

...
...

. . .
...

w180,81 w180,82 · · · w180,90
w1B1,81 w1B1,82 · · · w1B1,90

 (3)

W1′81,10 =

w11,81 w11,82 · · · w11,90
w12,81 w12,82 · · · w12,90

...
...

. . .
...

w180,81 w180,82 · · · w180,90

 , (4)

X ′
1,80 =

[
x1 x2 x3 · · · x79 x80

]
(5)

X1,81 =
[
x1 x2 x3 · · · x79 x80 1

]
(6)

WB11,10 =
[
w1B1,81 w1B1,82 · · · w1B1,90

]
(7)

C. Analysis of Generic Building Blocks

From the analysis of Section III-B, it can be inferred that
the generic building blocks of MLPs are composed of 3 types
of neuron, two types of activation function and plenty of wire
connections. However, from the mathematical perspective, it
is revealed that the core computational kernel of the MLPs
is matrix-vector multiply (MVM) in addition to two types of
the activation function. As it can be seen from the Fig. 4, the
connections in between layers can be elegantly abstracted by
the weight matrix. In virtue of representation of weight matrix,
the operation of MLPs can be represented by a series of MVM
operation with activation function inserted in between. Further-
more, the building block of MVM is the multiply-accumulate
(MAC) unit. The major advantage of MVM compared to the
representation by individual neurons is that the more abstract
representation is much easier for hardware design thinking and
design-space exploration in terms of optimization of PPA. To
take an example for illustration, Equation (1) to (7) formulate
the operation of the input to hidden layer 1 as shown in
the left side of Fig. 4. In (1), the MVM is further split by
X ′ ·W1′+B1′ to minimize the number of memory access for
low power due to the bias neuron only has fixed input value
one.

For the building blocks of activation function, the sigmoid is
non-linear function and cannot be implemented by hardware
directly. Hence, a proper numerical method is a must to be
exploited to approximate the non-linear function for further
implementation. In this mini-course, 16 segments piece-wise
linear (PWL) approximation for the sigmoid function is intro-
duced as shown in Fig. 5. Basic linear line y = ax +b is utilized
to approximate the non-linear function and results in the
composition of different segments with various parameters a
and b. The core building block of PWL approximation consists
of comparators, multipliers, and adders which are all primitive
logic elements in the hardware library. Fig. 5 demonstrates
the associated approximation figure of the sigmoid function.
Finally, the hardware architecture of MLPs can be devised as
shown in Fig. 6. The ACC-N represents an accumulator unit
with the capability of loop bound N in accumulation.

8 6 4 2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. 16-segments PWL sigmoid function

X

Input X
MEM

W1
MEM

LNR
ACC
MEM-1

Neuron
MEM-10

1

2

XW2
MEM

LNR
ACC
MEM-2

Neuron
MEM-20

1

2

XW3
MEM

16-Seg
PWL
Sigmoid

ACC
MEM-3

Neuron
MEM-30

1

2

ACC-80

ACC-10

ACC-10

Fig. 6. Layered architecture of MLPs

D. Test-Driven Development (TDD)

TDD is a software development process to pave the road
for code refactoring in the later stage which is adopted in the
course. Before implementing the MLPs hardware, the student
is asked to develop the HLS C/C++ test harness with stub
design under test (DUT) and pass some basic test cases first.
In this case, provided golden input and output data sets are
loaded in the test harness for verification.

Listing 1. HLS Example Code of Single Layer Architecture

1 void mvm_bias(
2 data_i_T data_i[N_IN],
3 data_o_T data_o[N_HID],
4 weight_T weights[N_IN+1][N_HID]
5)
6 {
7 acc_T sum=0;
8

9 Outer_MVM:for (int j = 0; j < N_HID; ++j) {
10 Inner_MVM:for (int i = 0; i < N_IN; ++i) {
11 sum += data_i[i] * weights[i][j];
12 if(i==(N_IN-1))
13 sum += weights[N_IN][j];
14 }// End of Inner_MVM
15 data_o[j] = sum;
16 sum=0;
17 }// End of Outer_MVM
18

19 }

TABLE I. Example of HLS Directives/Pragmas

Pipeline #pragma HLS PIPELINE
Parallel #pragma HLS UNROLL factor=N PARALLEL
Memory Partition #pragma HLS ARRAY PARTITION

variable=weights cyclic factor=N PARALLEL
dim=1

E. Design Implementation

According to the above analysis, Listing 1 presents the
corresponding HLS C/C++ implementation for the single layer

architecture in (1) without activation function. By leveraging
the code template, students can quickly build up the complete
MLPs in the class. It is quite scalable and modularized which
is expected to take less than 15 minutes to implement in HLS
C/C++. As can be seen, loops are basic but vital constructs
utilized by HLS C/C++ to represent the repetitive algorithmic
code. In this case, the repetitive algorithmic code means
the fine-grained MACs operation to form the coarse-grained
MVM computation as elaborated previously. Furthermore, the
implemented DUT can be inserted in the test harness for
HLS C/C++ simulation which is significantly faster than RTL
simulation.

F. Design-Space Exploration

DSE is achieved by add-on HLS directives/pragmas on
top of the developed HLS C/C++ code. Table I shows three
associated compile directives in Xilinx Vivado HLS [8] with
regard to the hardware design methods introduced in Section
II. The value of factor means the degrees of parallelism. For
example, first of all, the user needs to specify the name of
the variable of HLS C/C++ code to apply the pragmas. Next,
if the value of N PARALLEL is 2, it implies to partition
the array into 2 separate memory banks to improve the
memory bandwidth in two times for ARRAY PARTITION
directive or to allocate two hardware resources of MACs to
support parallel computation in the time domain for UNROLL
directive. Finally, the directives are inserted in either right after
line 10 or line 9 to explore different design space. In the hands-
on lab, students require to explore the DSE via these compiler
directives.

G. Quantitative Analysis

Using the 3 compile directives, 9 different designs for the
input to the hidden layer of MLPs without activation function
are obtained and Table II shows the results of DSE. Next,
a series of quantitative analysis is conducted to figure out
the rationale behind these figures to seek optimal design
parameters. Case 1 is the baseline implementation without
any optimization which is an implicit single PE architecture
with one DSP. DSP is a kind of dedicated hardware resource
for MAC operations in FPGA. It has the latency of 4831
cycles with estimated clocking speed 5.79 ns. In Case 2 and 3,
the pipeline is employed in inner and outer loop respectively
which results in 5.4X and 11.6X reduction of latency. But it
costs with a slight increase of FF/LUT resource in Case 2 and
DSP is replaced with much more FF/LUT in Case 3.

Pipeline and unroll loop with factors 2 and 4 are exploited
in Case 4 and Case 5. Case 4 has a latency of 481 cycles with
estimated clocking speed 7.27 ns which is 2X faster compared
to Case 2. However, while the unroll factor is increased to 4,
it does not decrease the number of clock cycles as expected
by a factor of two. A potential memory bound issue may exist
here. According to the evidence revealed from the results of
Case 4 and Case 5, the methodology of memory partition is
further applied in Case 6 to Case 9. As shown in the Listing
1, there are 3 arrays involved in the computation of MVM

TABLE II. Comparison with Various PPA Optimization Strategies

Case No. Outer Inner Estimated Clock Speed (ns) Latency (cycles) BRAM DSP48E FF/LUT
1 - - 5.79 4831 0 1 417/256
2 - pipeline 5.8 881 0 1 575/329
3 pipeline - 6.43 416 0 0 8649/8668
4 - pipeline,unroll=2 7.27 481 0 2 523/469
5 - pipeline,unroll=4 5.79 481 0 4 764/761
6 - pipeline,unroll=2,partition=2 7.27 471 0 2 492/405
7 - pipeline,unroll=4,partition=4 7.27 281 0 4 819/487
8 - pipeline,unroll=8,partition=8 10.17 191 0 8 1179/630
9 - pipeline,unroll=10,partition=10 10.17 181 0 10 1292/694

and so that cyclic partition with a factor of N PARALLEL is
applied. Case 6 has a latency of 471 with estimated clocking
speed 7.27 ns and consumption of 2 DSPs, 492 FFs, and 405
LUTs. In Case 7, the latency is reduced to 281 cycles with the
same estimated clocking speed and consumption of 4 DSPs,
760 FFs, and 761 LUTs. Compared to case 5, the memory
bound issue is tackled by a proper factor number of unroll
loop together with cyclic array partition. Case 8 has a latency
of 191 cycles with estimated clocking speed 10.17 ns and
consumption of 8 DSPs, 1179 FFs, and 630 LUTs which is
as expected.

Nonetheless, while it increases the factor to 10 in Case 9,
the latency does not decrease significantly as expected. This is
because the hidden layer has 10 neurons and the factor number
8 almost reaches the theoretical computation bound which
10 neurons perform operations in parallel. Thus, the factor
number 10 in Case 9 does not have expected improvement in
performance because it is saturated compared to Case 8.

Finally, Table III provides the results of HLS synthesis of
the complete MLPs hardware design.

TABLE III. Results of HLS Synthesis of MLPs

Clock Speed 6.92 ns
Latency 1344 cycles
BRAM 0

DSP48E 16
FF 4546

LUT 2957

IV. RELATED WORKS AND DISCUSSION

Compared to related research in the teaching of hardware
design such as [9] [10] [11], most of them are project-
based which takes several weeks to approach from bottom-
up. Furthermore, the working language of hardware design
is HDLs-based which is not as friendly as C/C++ for non-
hardware background students. Although in [12] [13] adapted
HLS methodology, it still takes much time to build up the real
project compared to this work.

The rationale behind the proposed mini-course can be
summarized by active learning and active teaching [14]. On
one hand, by the introduction of the on-going decoding
algorithm design of brain control daily-life tasks in Plan4Act,
it reinforces the motivation of students to learn how to de-
sign hardware accelerator through involving in real underway
project instead of toy case. On the other hand, the use of HLS

C/C++ overcomes the high entry barrier of RTL design flow.
Students can easily engage with the hands-on labs, materials
and participate in the class to implement a working MLPs. It
facilitates to learn by in-joy and in-actions.

In the following courses, it is natural to address other
design issues such as reusability and scalability. Then, teachers
can conduct to explore possible solutions by groups in class.
Taking the variation of MLPs as an example, it may evolve into
either deep layers which have as many hidden layers as possi-
ble or change associated activation function. Moreover, for the
number system in underlying hardware, it can be represented
by the floating point, fixed-pointed or even logarithmic number
system (LNS). C++ template and design pattern method can
be introduced to tackle the issue.

V. CONCLUSION AND FUTURE WORK

The proposed mini-course makes it possible to utilize on-
going BCI research problem and state-of-the-art HLS tool in
the design of an MLPs hardware accelerator in less than 4
hours as an opening course of digital system design. Students
were given an opportunity to grasp the key concepts of
hardware design and further apply to implement an MLPs in
class.

In the near future, our plan is to integrate more practical
and fascinating problems with HLS hands-on labs into the
course such as examples of pattern recognition in Keras.
In the meantime, developing the design pattern of the NNs
hardware accelerator to build up a class of hardware library
of intelligent embedded computing for reuse. Students can
discuss directly the design process and elements as well as the
user’s requirement, helping the hardware design community
more readily share.

ACKNOWLEDGMENT

This research is supported by Horizon 2020 Framework
Programme (FETPROACT-01-2016FET Proactive: emerging
themes and communities) under grant agreement no. 732266
(Plan4Act).

REFERENCES

[1] T. Kohonen, “An introduction to neural computing,” Neural networks,
vol. 1, no. 1, pp. 3–16, 1988.

[2] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” CoRR, vol. abs/1705.06963, 2017.

[3] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 4, pp. 473–491, 2011.

[4] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi et al., “A survey and evaluation of
fpga high-level synthesis tools,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–
1604, 2016.

[5] K. Parhi, VLSI Digital Signal Processing Systems: Design And Imple-
mentation. Wiley India Pvt. Limited, 2007.

[6] EU Plan4Act project. [Online]. Available: http://plan4act-project.eu/
index.php/about/

[7] R. Lippmann, “An introduction to computing with neural nets,” IEEE
Assp magazine, vol. 4, no. 2, pp. 4–22, 1987.

[8] Xilinx, Vivado Design Suite User Guide:
High-Level Synthesis, Feb,2017. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/sw manuals/
xilinx2017 2/ug902-vivado-high-level-synthesis.pdf

[9] T. Sansaloni, A. Pérez-Pascual, V. Torres, V. Almenar, J. F. Toledo,
and J. Valls, “Fft spectrum analyzer project for teaching digital signal
processing with fpga devices,” IEEE Transactions on education, vol. 50,
no. 3, pp. 229–235, 2007.

[10] A. Rodrı́guez, J. Portilla, E. de la Torre, and T. Riesgo, “Teaching hybrid
hw/sw embedded system design using fpga-based devices,” in Design of
Circuits and Integrated Systems (DCIS), 2016 Conference on. IEEE,
2016, pp. 1–5.

[11] V. Bonato, M. M. Fernandes, J. M. Cardoso, and E. Marques, “Practical
education fostered by research projects in an embedded systems course,”
International Journal of Reconfigurable Computing, vol. 2014, p. 7,
2014.

[12] I. Skliarova, V. Sklyarov, A. Sudnitson, and M. Kruus, “Integration of
high-level synthesis to the courses on reconfigurable digital systems,”
in Information and Communication Technology, Electronics and Micro-
electronics (MIPRO), 2015 38th International Convention on. IEEE,
2015, pp. 166–171.

[13] D. Navarro, O. Lucia, L. A. Barragan, I. Urriza, and J. I. Artigas,
“Teaching digital electronics courses using high-level synthesis tools,”
in e-Learning in Industrial Electronics (ICELIE), 2013 7th IEEE Inter-
national Conference on. IEEE, 2013, pp. 43–47.

[14] J. Grunert, The course syllabus: A learning-centered approach. Boston,
MA: Anker Publishing Co, Inc, 1997.

