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Abstract— A small modular neural network is presented
which is able to control the sensor-driven behavior of walking
machines with many degrees of freedom. The controller
is composed of a so called minimal recurrent controller
(MRC) for sensory signal processing, a SO(2)–network as
neural oscillator to generate the rhythmic leg movements,
and a velocity regulating network (VRN) which expands the
steering capabilities of the walking machine. This recurrent
neurocontroller enables the machine to explore an in-door
environment by avoiding obstacles. It was developed and
tested using a physical simulation environment, and was then
successfully transferred to the physical four-legged walking
machine, called AMOS-WD02.

I. I NTRODUCTION

Research on biologically inspired walking machines is
focused for the most part on the construction of such
machines [7], [16], on a dynamic gait control [14], [17],
and on the generation of an advanced locomotion control
[4], [11], for instance on rough terrain [6], [10]. Most
researches do not concentrate on the generation of a sensor-
driven behavior of walking machines. In general, those
walking machines are solely designed for the purpose of
motions without sensing the surrounding environment. Two
articles [1], [9] reported on neural controllers for locomo-
tion and obstacle avoidance generated by an evolutionary
algorithm. Both controllers use the same approach to avoid
obstacles. They inhibit the neurons of the legs on the
opposite side of a detected obstacle. The walking machines
then turn in a slight curve, and the walking velocity is
reduced. But these controllers sometimes have difficulties
to avoid obstacles or when the walking towards a wall,
because they are not able to turn around or even to walk
backwards.

In this article, the modular approach for neural control
of a reactive behavior is introduced, and the four-legged
autonomous walking machine AMOS-WD02 is employed
as a platform for testing the developed neural controller.
Two simple infrared sensors are used to enable a sensor-
driven reactive behavior. The neural controller generates
the obstacle avoidance behavior by changing the rhythmic
leg movements, also preventing the walking machine from
getting stuck in corners or in a deadlock situation by ap-
plying hysteresis effects provided by the recurrent structure
of the network.

The following section describes the technical specifica-
tions of the walking machine. Section 3 explains the neural
perception-action system for reactive behavior. The exper-
iments and results are discussed in section 4. Conclusions
and an outlook on future research are given in the last
section.

II. T HE WALKING MACHINE AMOS-WD02

Inspired by morphology of the reptile’s trunk and its mo-
tion, we design the four-legged walking machine AMOS-
WD02 with a backbone joint at the trunk, which facilitates
a more flexible and faster motion. The trunk is composed
of the backbone joint which can rotate vertically, four
identical legs, each with two degrees of freedom, and
additionally an active tail with two degrees of freedom
rotating in the horizontal and vertical axes (see Fig.1). All
leg joints are driven by analog modelcraft servo motors
producing a torque between 70 and 90 Ncm. The backbone
joint is driven by a digital servo motor with a torque
between 200 and 220 Ncm. For the active tail, micro-
analog servo motors with a torque around 20 Ncm are
selected. The height of the walking machine is 12 cm
without its tail and its weight is approximately 3 kg. In
addition, this machine has two infrared (IR) sensors, two
integrated auditory-tactile sensors [15] for different reactive
behavior; e.g. obstacle avoidance, protecting the legs from
colliding with obstacles and sound tropism. On the active
tail, a mini wireless camera with built in a microphone is
installed for monitoring and observation while the machine
is walking. All in all AMOS-WD02 has 11 active degrees
of freedom and 4 sensors, and therefore it can serve as a
reasonably complex platform for experiments concerning
the functioning of neural perception-action systems.

The developed neural controller is finally programmed
into a Personal Digital Assistant (PDA) which communi-
cates with the Multi-Servo IO-Board (MBoard) to control
the servo motors and to receive sensory input signals via
an RS232 interface.

III. N EURAL PERCEPTION-ACTION SYSTEMS

In order to create robust and effective neural con-
trollers which are able to generate exploration and obstacle
avoidance behaviors, the dynamical properties of recurrent



Fig. 1. Left: the 4-legged walking machine AMOS-WD02 with 11
active degrees of freedom. Right: top view of AMOS-WD02 showing the
backbone joint corresponding to the morphology of the reptile’s trunk.

neural networks are utilized. The standard additive neuron
model with sigmoidal transfer function together with its
time-discrete dynamics is given by

ai(t+1) = Bi+
n∑

j=1

Wij tanh(aj(t)) i = 1, . . . , n (1)

where n denotes the number of units,ai their activities,
Bi represents a fixed internal bias term together with a
stationary input to neuroni, andWij the synaptic strength
of the connection from neuronj to neuroni. The output
of the neurons is given by the sigmoidoi = tanh(ai).
Input units are configured as linear buffers. This neural
controller is divided into three subnetworks which are
the signal preprocessingnetwork, the neural oscillator
network and thevelocity regulatingnetwork. All networks
are described in detail in the following sections. They
have been tested first in a physical simulation environment,
which simulates the walking machine in an environment
with obstacles (compare Fig.2). The simulator is based
on Open Dynamics Engine1 (ODE) and it enables an
implementation, which is faster than real time and which
is precise enough to mirror corresponding behavior of a
physical robot. This simulation environment is connected
to the Integrated Structure Evolution Environment (ISEE)
[13] which is the software platform for developing neural
controllers. Eventually, a derived controller is downloaded
into the walking machine and then tested in the in-door
environment, e.g. a living room or an office. Especially,
as in the simulator, the walking machine is able to avoid
obstacles and to get out of corners and deadlock situations.

A. Preprocessing of the sensor inputs

The perception systems are driven by using two IR
sensors. These sensors are used to detect obstacles in
a distance between 10-30 cm. For the preprocessing of
sensory signals, a neural structure called minimal recurrent
controller (MRC) [12] is applied. This controller has been
developed for a two wheeled miniature Khepera robot.
On the background of its well understood functionality

1see also: http://opende.sourceforge.net/

Fig. 2. The simulated walking machine performing obstacle avoidance
and exploration behaviors.

the parameters were manually adjusted for using it in
our approach. First, the weightsW1,2 from the input to
the output units of both sides are set to a high value
to eliminate the noise of the sensors, i.e.W1,2 = 7.
Then the self-connection weights of the output neurons
were manually adjusted to derive a reasonable hysteresis
input interval. This effect determines the turning angle for
avoiding obstacles. Both self-connections are set to 5.4
for convenience. Finally, the recurrent connections between
output neurons were symmetrized and manually adjusted to
the value -3.55. This guarantees the optimal functionality.
The resulting neural network is shown in Fig.3.

Fig. 3. The structure of a MRC with appropriate weights for this
application.

The sensory signals are mapped onto the interval[−1,1],
with −1 representing “no obstacles”, and1 “an obstacle is
near”. The signals are used as Input1 and Input2 of the neu-
ral controller. The output neurons of the MRC have “super-
critical” self-connections which produce a hysteresis effect
for both output signals. A strong excitatory self-connection
(> 5) will hold the roughly constant output signal longer
than a smaller one, resulting in a larger turning angle to
avoid obstacles or corners. To visualize this phenomenon,
the hysteresis effect is plotted in Fig.4, and the different
weights of an excitatory self-connection can be compared.

In addition, there is a third hysteresis phenomenon
involved which is associated to the even 2-loop between
the two output neurons [2]. In general conditions, only
one neuron at a time is able to get a positive output,



Fig. 4. Comparison of the “hysteresis effect” with different self-
connection weights at the output neuron. a) shows that the output signal
(smashed line) immediately decreases from 1 to -1 when the input signal
(full line) is inactive (-1). b) shows that the output signal (smashed line)
stays longer at 1 and then decreases to -1 when the input signal (full line)
is inactive. c) shows that the output signal stays longest at 1 and then
decreases to -1.

while the other one has a negative output, and vice versa.
The phenomenon is presented in Fig.5. By applying these
phenomena, the walking machine is enabled to avoid the
obstacles, corners and deadlock situations. Finally, the out-
put signals, output1 and output2 of the MRC together with
the velocity regulating network described below, decide and
switch the behavior of the walking machine; for instance,
switching the behavior from “walking forward” to “turn
left” when there are obstacles on the right, or the other way
round. The MRC output also decides in which direction
the walking machine should turn in corners or deadlock
situations depending on which sensor has been previously
active. In special situations, like walking towards a wall,
both IR sensors might get positive outputs at the same
time, and, because of the velocity regulating network, the
walking machine is able to walk backwards and to leave
the wall.

Fig. 5. a) to d) present the input signals (full line) of the IR sensors and
the output signals (smashed line) of the output neurons. Because of the
inhibitory synapses and the high activity of output1 (a), the output2 (b)
is still inactive although input2 is active. c) and d) show the switching
condition between output1 and output2 when the activity of input1 is low,
meaning “no obstacles detected” and the activity of input2 is still high,
meaning “obstacles detected”.

B. Neural oscillator network for rhythmic movements

The concept of neural oscillators for walking of
quadrupeds has been studied e.g. by Hiroshi Kimura [5].
There, a neural oscillator network with four neurons is
constructed by connecting four neural oscillator’s, each
of which drives the hip joint of one of the legs. Here
we use a so called SO(2)–network [3] to generate the
rhythmic locomotion. It has already been implemented
successfully as central pattern generator (CPG) in the six-
legged walking machine Morpheus [9]. The same structure
and weights are applied to control the four-legged walking
machine AMOS-WD02.

The SO(2)–network consists of two neurons (compare
Fig.6), where the sinusoidal neuron outputs correspond to
a quasi-periodic attractor. They are used to drive the motors
directly for generating the locomotion. This network is
implemented on a PDA having a update frequency of 25.6
Hz and it generates a sinusoidal output with a frequency
of approximately 0.8 Hz.

Fig. 6. Left: the structure of the SO(2)–network with the synaptic weights
for our purpose.B1 andB2 are bias terms withB1 = B2 = 0.01. Right:
the output signals of neurons 1 (smashed line) and 2 (full line) from the
SO(2)–network. The output of neuron 1 is used to drive all thoracic joints
and one backbone joint and the output of neuron 2 is used to drive all
basal joints.



By using symmetric output weights a typical trot gait is
obtained, which enabled an efficient motion. In a trot gait
(see Fig.7), the diagonal legs are paired and move together.

Fig. 7. Left: the typical trot gait. X-axis represents time and y-axis
represents the legs. During the swing phase (white blocks) the feet have
no ground contact. During the stance phase (gray blocks) the feet touch
the ground. Right: the orientation of the legs.

C. The velocity regulating network

To change the motions, e.g. from walking forwards to
backwards and to turning left and right, the simplest way
is to perform a 180 degree phase shift of the sinusoidal
signals which drive the thoracic joints. To do so, we
introduce the velocity regulating network (VRN) which is
described in [8]. It performs approximately a multiplication
of two input valuesx, y ∈ [−1,1]. For our purpose the
input x is the oscillating signal coming from the SO(2)–
network to generate the locomotion and the inputy is the
sensory signal coming from the MRC network to drive
the behavior. Fig.8 presents the network consisting of four
hidden neurons and one output neuron. Fig.8 on the right
shows that the output signal gets a phase shift of 180
degrees, when the sensory signal (inputy) changes from
-1 to 1.

Fig. 8. Left: the VRN with four hidden neurons and the given bias
termsB which are all equal to -2.48285. Right: the output signal (full
line) when the inputy is equal to 1 and the output signal (smashed line)
when the inputy is equal to -1.

D. The modular neural controller

The combination of all three networks leads to an
effective neural network for reactive behavior control in
changing environments. One oscillating output signal from
the SO(2)–network is directly connected to all basal joints,
while the other output is connected to the thoracic joints
only indirectly, passing through all hidden neurons of the
VRN through the so calledx–input. In addition, for a
more flexible and faster motion, the backbone joint can
be activated by applying the first oscillating output signal
(Output1 of the SO(2)–network). The output neurons of
the MRC network are also connected to all hidden neurons
of the VRN asy–inputs. This neural controller and the
location of the corresponding motor neurons on the walking
machine are shown in Fig.9.

Fig. 9. This is the final modular neural controller. It generates a trot
gait which is modified when obstacles appear. The bias termsB of the
VRN are again all equal to -2.48285. Two infrared sensors are directly
connected to the input neurons of the MRC network. If the obstacle is
detected, the outputs of the MRC network make the walking machine
turn because the VRN changes the quasi-periodic signals at the thoracic
joints.

IV. EXPERIMENTS AND RESULTS

The performance of the network shown in Fig.9 is firstly
tested on the physical simulation with a complex environ-



ment (see Fig.2), and then it is downloaded into the mobile
processor of AMOS-WD02 for a test on the physical
autonomous robot. The simulated walking machine and
the physical walking machine behave almost similarly. The
sensory information of IR sensors is used to modify the
machine behavior as expected from a perception-action
system. If the obstacles are presented on either the right
or the left side, the controller will change the rhythmic
movement of the legs, causing the walking machine to turn
on the spot and immediately avoiding the obstacles.

In some situations, like approaching a corner and a dead-
lock situations, the MRC preprocessing network decides
the turning direction, left or right. As shown in Fig.10, M0
and M1 of the thoracic joints (compare Fig.9) are turned
into the opposite direction, if the left IR (IR2) detects
the obstacle; correspondingly M2 and M3 of the thoracic
joints are turning into the opposite direction when the
right IR (IR1) is active. In special situations, e.g. walking
towards a wall or detecting obstacles on both sides, both
IR sensors are simultaneously active (see third column
in Fig.10). Thus, M0, M1, M2 and M3 of the thoracic
joints are turning into another directions which causes the
walking machine to walk backwards and eventually it is
able to leave the wall. Fig.11 is a series of photos of these
example experiments2 which show the reactive behavior of
the walking machine. The photos on the left in Fig.11 show
that the walking machine can avoid the unknown obstacle,
and it can also leave a corner (middle column in Fig.11).

To compare the controller mentioned in [9] with the one
described here, we implement that controller and test it
with the same environments. The result is shown in the
right column of photos. It can be seen that the controller
[9] has difficulties to avoid and leave the corner. At first, the
left IR sensor detects a side wall and then motors (M0 and
M1 comparing Fig.12) are inhibited affecting the walking
machine to turn right with a slight curve. After that it faces
to the corner, both IR sensors are active, and then all motors
(M0, M1, M2 and M3) are inhibited. Therefore the walking
machine gets stuck in front of the corner. Fig.12 shows the
motor signals as well as the signals from IR sensors. In
all experiments, the walking cycle is approximately 1.25 s
and the walking velocity without using the backbone joint
is 10 cm/s.

V. CONCLUSIONS

The four-legged walking machine AMOS-WD02 is pre-
sented as a reasonably complex robot platform to test
a neural controller generating the robust sensor-driven
exploration and obstacle avoidance behaviors.

The modular neural controller was designed as a neural
network composed of a preprocessing network (MRC),
a two-neuron oscillator network for central pattern gen-
eration, and the velocity regulating network (VRN) for

2for more demonstrations see http://www.ais.fraunhofer.de/∼poramate

Fig. 10. Left: if the obstacles are presented on the left of the walking
machine, then the two motors (M0, M1) on its right are changed into
the opposite direction presented by the arrow smashed lines in the lower
picture. Middle: if the obstacles are detected at the right of the walking
machine, then two motors (M2, M3) on its left are reversed which is
presented by the arrow smashed lines in the lower picture. Right: in this
situation, the obstacles are simultaneously detected on both sides resulting
in the reversion of all motors (M0, M1, M2 and M3). They are presented
by the arrow smashed lines in the lower picture.

changing the locomotion appropriately. The controller is
used to generate the walking gait and to perform the
reactive behavior; for instance, exploring an in-door en-
vironment by wandering around, avoiding obstacles when
they are detected, and leaving from a corner as well as
from deadlock situations. In case of protecting the legs of
the walking machine from hitting obstacles, like chair or
desk legs, one can easily install more IR sensors on the
legs, and all there signals can send to the corresponding
input neurons of the MRC network. However, the controller
has been tested successfully in the physical simulation
environment as well as on the walking machine. Thus we
were able to reproduce these basic behaviors, generally
achieved for wheeled robots, also for a machine with many
degrees of freedom. The generated behaviors are of course
essential also for an autonomous walking machine. More
demanding tasks will be related to the use of additional



Fig. 11. Examples of the behavior driven by the two IR sensors
of the four-legged walking machine AMOS-WD02. Left: the typical
behavior avoiding obstacles. Middle: the walking machine is able to leave
from the corner. Right: for comparison the controller described in [9] is
implemented. The photos show that now the walking machine cannot
avoid the wall and leave the corner. All photos are taken with the same
time slot.

sensors. Therefore, future research we will make use of
signals coming from combined auditory and tactile sensors,
which are fixated on the two front legs. They will be
used for protecting legs from colliding with obstacles using
tactile information, and also for navigation based on sound
tropism. Finally all these different reactive behaviors will
be fused into one modular neural controller, where modules
have to cooperate or compete as in versatile perception-
action systems.
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