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Abstract: In this article, a modular neurocontroller is presented. It has the capability to generate a reactive behavior 
of walking machines. The neurocontroller is formed on the basis of a modular structure. It consists of the three different 
functionality modules: neural preprocessing, a neural oscillator network and velocity regulating networks. Neural 
preprocessing is for sensory signal processing. The neural oscillator network, based on a central pattern generator, 
generates the rhythmic movement for basic locomotion of the walking machines while the velocity regulating networks 
change the walking directions of the machines with respect to the sensory inputs. As a result, this neurocontroller 
enables the machines to explore in- and out-door environments by avoiding obstacles and escaping from corners or 
deadlock situations. It was firstly developed and tested on a physical simulation environment, and then was successfully 
transferred to the six-legged walking machine AMOS-WD06. 
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1. INTRODUCTION 
The idea behind this article is to investigate the 

neural mechanisms controlling biologically inspired 
walking machines represented as sensor-driven 
systems. The systems are designed in a way that 
they can react to real environmental stimuli (positive 
or negative tropism) as they sense without concern 
for task planning algorithm or memory capacities. 

Research in the domain of biologically inspired 
walking machines has been ongoing for over 10 
years. Most of them has been focused on the 
construction of such machines [1-4] on a dynamic 
gait control [5, 6], and on the generation of an 
advanced locomotion control [7-9], for instance on 
rough terrain [10-14]. In general, these walking 
machines were solely designed for the purpose of 
motion without the sensing of environmental stimuli. 

However, from this research area, only few have 
presented physical walking machines reacting to an 
environmental stimulus using different approaches 
[15-18]. On the one hand, this shows that less 
attention has been paid to the walking machines 
performing a reactive behavior. On the other hand, 
such complex systems can serve as a methodology 
for study embodied systems consisting of sensors 

and actuators for explicit agent-environment 
interactions or they can work as artificial perception-
action systems.  

Here, the biologically inspired six-legged 
walking machine AMOS-WD061 is employed as an 
experimental device for the development and testing 
of a neurocontroller causing a sensor-driven reactive 
behavior. This neurocontroller is created on the basis 
of a modular structure; i.e. it is flexible to adapt for 
controlling in different walking machines [19] and it 
is even able to modify for generating different 
reactive behaviors, e.g. sound tropism (positive 
tropism) [20]. In this article, it is constructed in the 
way that it enables the walking machine to avoid the 
obstacles (negative tropism) by changing the 
rhythmic leg movements of the thoracic joints. 
Furthermore, it also prevents the walking machine 
from getting stuck in corners or deadlock situations 
by applying hysteresis effects provided by the 
recurrent neural network of the neural preprocessing 
module. The following section describes the 
technical specifications of the walking machine 
together with its physical simulator. Section 3 
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explains a modular neurocontroller together with the 
subnetworks (modules) for a reactive obstacle-
avoidance behavior. The experiments and results are 
discussed in section 4. Conclusions and an outlook 
on future research are given in the last section. 
 

2. THE BIOLOGICALLY INSPIRED 
WALKING MACHINE AMOS-WD06 

The AMOS-WD06 [21] consists of six identical 
legs and each leg has three joints (three degrees of 
freedom (DOF)) which is somewhat similar to a 
cockroach leg [22]. The upper joint of the legs, 
called thoracic joint, can move the leg forward and 
backward while the middle and lower joints, called 
basal and distal joints respectively, are used for 
elevation and depression or even for extension and 
flexion of the leg. The levers which are attached to 
distal joints were built with proportional to the 
dimension of the machine. And, they are kept short 
to avoid greater torque in the actuators. This leg 
configuration provides the machine with the 
possibility to perform omnidirectional walking; i.e. 
the machine can walk forward, backward, lateral and 
turn with different radii. Additionally, the machine 
can also perform a diagonal forward or backward 
motion to the left or the right by activating the 
forward or backward motion together with the lateral 
left or right motion. The high mobility of the legs 
enables the walking machine to walk over an 
obstacle, stand in an upside-down position or even 
climb over obstacles2 (see Fig. 1). 

 

 
 

Fig. 1. (A) The AMOS-WD06 walks over an obstacle 
with the maximum height of 7 cm, (B) stands in an 
upside-down position and (C) climbs over obstacles 
with the help of an active backbone joint (arrow). 

                                                 
2 Note that the controller driving the machine also with 
the backbone joint is not described in this paper; it will be 
published elsewhere together with the technical details for 
climbing. 

Inspired by invertebrate morphology of the 
american cockroach’s trunk and its motion (see    
Fig. 2), a backbone joint which can rotate in a 
horizontal axis was constructed. It is desired to 
imitate like a connection between the first (T1) and 
second (T2) thoracic of a cockroach. Thus, it will 
provide enough movement for the machine to climb 
over an obstacle by rearing the front legs up to reach 
the top of an obstacle and then bending them 
downward during step climbing (compare Fig. 1C).  

 

 
 

Fig. 2. A cockroach climbs over large obstacles. It 
can bend its trunk downward at the joint between the 

first (T1) and second (T2) thoracic to keep the legs 
close to the top surface of the obstacles for an 

optimum climbing position and even to prevent 
unstable actions (modified from R.E. Ritzmann 2004 

[22] with permission). 
 

However, this active backbone joint will not be 
activated in a normal walking condition of the 
machine. Mainly, it is used to connect the trunk 
(second thoracic), where two middle legs and two 
hind legs are attached, with the head (first thoracic), 
where two forelegs are installed. The trunk and the 
head are formed with the maximum symmetry to 
keep the machine balanced for the stability of 
walking. They are also designed to be as narrow as 
possible to ensure optimal torque from the 
supporting legs to the center line of the trunk. 
Moreover, a tail with two DOF rotating in the 
horizontal and vertical axes was implemented on the 
back of the trunk. In fact, this actively moveable tail 
which can be manually controlled is used only to 
install a mini wireless camera for monitoring the 
environment while the machine is walking. But the 
tail also gives the walking machine a more animal-
like appearance, e.g. in analogy to a scorpion’s tail 
with a sting [23]. 

All leg joints are driven by analog servomotors 
producing a torque between 80 and 100 Ncm. The 
backbone joint is driven by a digital servomotor with 
a torque between 200 and 220 Ncm. For the tail 
joints, micro-analog servomotors with a torque 
around 20 Ncm were selected. The height of the 
walking machine is 12 cm without its tail and the 
weight of the fully equipped robot (including 21 
servomotors, all electronic components and a mobile 
processor) is approximately 4.2 kg. In addition, the 
walking machine has six Infra-Red (IR) sensors. 
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Two of them, which can detect the obstacle at a long 
distance between 20-150 cm, were fixated at the 
forehead while the rest of them, operating at a 
shorter distance between 4-30 cm, were fixated at 
the two forelegs and two middle legs. They help the 
walking machine to detect obstacles and prevent its 
legs from hitting obstacles, like chair or desk legs. 
Also, one upside-down detector was implemented 
beside the machine trunk. It provides the 
information of upside-down position of the walking 
machine.  

All in all the AMOS-WD06 has 21 active degrees 
of freedom, 7 sensors and 1 wireless camera, and 
therefore it can serve as a reasonably complex 
platform for experiments concerning the functioning 
of a neural sensor-driven system. However, to test 
neurocontrollers and to observe the reactive 
behavior of the walking machine (e.g. obstacle 
avoidance), it was firstly done through a physical 
simulation environment, namely “Yet Another 
Robot Simulator” (YARS)3. The simulator is based 
on Open Dynamics Engine (ODE) [24]. It provides a 
defined set of geometries, joints, motors and sensors 
which is adequate to create the AMOS-WD06 with 
IR sensors in a virtual environment with obstacles. 
The basic features of the simulated walking machine 
are closely coupled to the physical walking machine, 
e.g. weight, dimension, motor torque and so on. It 
consists of body parts (head, backbone joint, trunk 
and limbs), servomotors, IR sensors and an 
additional tail. The simulated walking machine with 
its virtual environment is shown in Fig. 3. 

 

 
 

Fig. 3. Different views of the simulated walking 
machine in its environment. 

 

Furthermore, the simulator enables an 
implementation, which is faster than real time and 
which is precise enough to present the corresponding 
behavior of the physical walking machine. This 
simulation environment is also connected to the 
Integrated Structure Evolution Environment (ISEE) 
[25] which is a software platform for developing 
neurocontrollers. In the final stage, a developed 
neurocontroller after the test on the simulator is then 
applied to the physical walking machine to 

                                                 
3 http://www.ais.fraunhofer.de/INDY/, see menu item 
TOOLS.  

demonstrate the behavior in the real environment. 
The controller is then programmed into a mobile 
processor (a personal digital assistant (PDA)) with 
an update frequency of up to 75 Hz. The PDA is 
interfaced with the Multi-Servo IO-Board 
(MBoard)4 which digitizes sensory input signals and 
generates a pulse width modulation (PWM) signal at 
a period of 20 ms to command the servomotors. The 
communication between the PDA and the MBoard is 
accomplished via an RS232 interface at 57.6 kBits 
per second.  

 
3. NEURAL PERCEPTION-ACTION 

SYSTEMS 
In order to create the robust and effective 

neurocontroller which is able to generate exploration 
and reactive obstacle avoidance behaviors, the 
dynamical properties of recurrent neural networks 
are utilized. The standard additive neuron model 
with sigmoidal transfer function together with its 
time-discrete dynamics is given by: 
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where n denotes the number of units, ai their 
activity, Bi represents a fixed internal bias term 
together with a stationary input to neuron i, and Wij 
synaptic strength of the connection from neuron j to 
neuron i. The output of neurons is given by the 
sigmoid oi = tanh (ai). Input units are configured as 
linear buffers. 

The modular neurocontroller for the desired 
behaviors are divided into three subnetworks 
(modules) which are the signal processing network, 
the neural oscillator network and the velocity 
regulating network. All networks are described in 
detail in the following sections. 

 
3.1 SIGNAL PROCESSING NETWORK 
The perception systems are driven by using six 

IR sensors. The minimal recurrent controller (MRC) 
structure [26] is applied for preprocessing IR 
signals. This controller has been originally 
developed for controlling a miniature Khepera robot 
[27], which is a two wheeled platform. Here, it is 
modified for controlling the walking directions of 
the machine to avoid obstacles or escape from a 
corner and even a deadlock situation. 

To do so, all signals of IR sensors (IR1, IR2, IR3, 
IR4, IR5 and IR6) are mapped onto the interval        
[-1, +1], with -1 representing “no obstacles”, and +1 

                                                 
4 http://www.ais.fraunhofer.de/BE/volksbot/mboard-
content.html. 
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“an obstacle is detected”. Then, the three sensory 
signals on each side (right or left) are simply 
combined in a linear domain of the sigmoid transfer 
function at hidden neurons; i.e. each of them is 
multiplied with a small weight, here W1,2,3,4,5,6 = 
0.15. The output signals of the hidden neurons are 
directly connected to the output neurons (Out1, 
Out2) while the final output signals of the network 
(Output1, Output2) will be connected to another 
network called the velocity regulating networks 
(VRNs) described later. The parameters of the 
preprocessing network were manually adjusted on 
the basis of its well understood functionality [26]. 

First, the bias term (B) of the hidden neurons is 
set to determine a threshold value of the sum of the 
sensory inputs, e.g. 0.2. When the measured value is 
greater than the threshold in any of the three sensory 
signals, excitation of the hidden neuron on the 
corresponding side occurs. Consequently, the 
activation of each hidden neuron can vary in the 
range between ≈ -0.245 (“no obstacles is detected”) 
and ≈ 0.572 (“all three sensors on the appropriate 
side simultaneously detect obstacles”). 

Furthermore, the weights from the hidden to the 
output units are set to a high value, i.e. W7,8 = 25.0, 
to eliminate the noise of the sensory signals. In fact, 
these high multiplicative weights drive the signals to 
switch between two saturation domains, one low    
(≈ -1) and the other high (≈ +1). After that, the self-
connection weights (W9,10) of Out1 and Out2 were 
manually adjusted to derive a reasonable hysteresis 
input interval which results to an appropriate turning 
angle of the walking machine when the obstacles are 
detected. Hereby, they are set to 4.0. Finally, the 
recurrent connections (W11,12) between output 
neurons were symmetrized and manually adjusted to 
the value of -2.5. This guarantees the optimal 
functionality described later. The resulting network 
is shown in Fig. 4. 

The set-up parameters cause that the network can 
eliminate the noise of the sensory signals. The 
network can even determine the turning angle in 
accordance with the width of the hysteresis loop; i.e. 
the wider the loop, the larger the turning angle is. 
The capability of the network in filtering the sensory 
noise together with the hysteresis loop of the 
network are shown in Fig. 5. 

In addition, there is a third hysteresis 
phenomenon involved which is associated to the 
even loop [28] between the two output neurons. In 
general conditions, only one neuron at a time is able 
to get a positive output, while the other one has a 
negative output, and vice versa. The phenomenon is 
presented in Fig. 6. 

By applying the described phenomena, the 
walking machine is able to avoid the obstacles and 
escape from corners as well as deadlock situations.  

 
 

Fig. 4. The signal processing network of six IR sensors 
with the appropriate weights for controlling the 

walking direction of the machine to avoid obstacles 
and to prevent the machine from getting stuck in 

corners or deadlock situations.  
 

 
 

Fig. 5. (A) The sensory signal (IR5, gray line) before 
preprocessing and the output signal (Output2, solid 

line) after preprocessing. (B) The “hysteresis effects” 
between input and output signals of Out2. In this 

situation, the input of Out2 varies between ≈ -0.245 
and ≈ 0.572 back and forth while the input of Out1 is 
set to ≈ -0.245 (“no obstacles are on the right side”). 

Here, when the output of Out2 is active (≈ 1); i.e. 
“obstacles are on the left side”, then the walking 

machine will be driven to turn right until the output 
becomes inactivated (≈ -1). On the other hand, if such 

condition occurs for Out1, the input of Out1 will derive 
the same hysteresis effect as the input of Out2 does.  
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Fig. 6. (A) and (B) present the sensory signals 
(IR1 and IR4, gray line) and the output signals 

(Output1 and Output2, solid line), respectively. Due to 
the inhibitory synapses between two output neurons 
and the high activity of Out1 (A), Output2 (B) is still 

inactive although IR4 becomes activated at around 170 
time steps. At around 320 time steps, the switching 

condition between Output1 and Output2 occurs 
because IR1 becomes inactivated, meaning “no 

obstacles detected” while IR4 is still active, meaning 
“obstacles detected”. 

 

Finally, Output1 and Output2 of the 
preprocessing network together with the velocity 
regulating networks, described below, control and 
switch the behavior of the walking machine; for 
instance, switching the behavior from “walking 
forward” to “turning left” when there are obstacles 
on the right, or vice versa. The network outputs also 
determine in which direction the walking machine 
should turn in corners or deadlock situations 
depending on which sensor side has been previously 
active. In special situations, like walking toward a 
wall, both sides (right and left) of IR sensors might 
get positive outputs at the same time, and, because 
of the velocity regulating networks, the walking 
machine is able to walk backward. During walking 
backward, the activation of the sensory signal of one 
side might be still active while the other might be 
inactive. Correspondingly, the walking machine will 
turn into the opposite direction of the active signal 
and it can finally leave from the wall. 

 
3.2 NEURAL OSCILLATOR NETWORK  
The concept of neural oscillators for walking 

machines has been studied in various works [29-33]. 
For instance, Kimura et al. [34] presented a neural 

oscillator network with four neurons. The network 
has been used to control a four-legged robot 
TEKKEN where each neuron of the network drives 
each hip joint of the legs. 

Here a so-called “2-neuron network” [35] is 
employed. It is used as a central pattern generator 
(CPG) [36, 37] which corresponds to one basic 
principle of locomotion control of walking animals 
[38, 39]. The network consists of two neurons (see 
Fig. 7A). It has already been implemented 
successfully on other walking machines [19, 40]. 
The same weight matrixes presented there are used 
here. Consequently, it generates the oscillating 
output signals corresponding to a quasi-periodic 
attractor (see Fig. 7B). They are used to drive the 
motors directly for generating the appropriate 
locomotion of the AMOS-WD06. 

 

 
 

Fig. 7. (A) The structure of the 2-neuron network 
with the synaptic weights for the purpose.  B1 and B2 

are bias terms with B1 = B2 = 0.01. (B) The output 
signals of neurons 1 (dashed line) and 2 (solid line) 
from the neural oscillator network. The output of 

neuron 1 is used to drive all thoracic joints and the 
active backbone joint while the output of neuron 2 is 

used to drive all basal and all distal joints. 
 

This network is implemented on a PDA with an 
update frequency of 25.6 Hz. It generates a 
sinusoidal output with a frequency of approximately 
0.8 Hz. By using asymmetric connections from the 
oscillator outputs to corresponding motor neurons, a 
typical tripod gait for the six-legged walking 
machine is obtained (see Fig. 8).  This typical gait 
enables an efficient motion, where the diagonal legs 
are paired and move together. 
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Fig. 8. (A) The typical tripod gait. X-axis represents 
time and y-axis represents the legs. During the swing 
phase (white blocks) the feet have no ground contact. 
During the stance phase (gray blocks) the feet touch 

the ground. (B) The orientation of the legs of the 
AMOS-WD06 

 

3.3 THE VELOCITY REGULATING 
NETWORK  

To change the motions, e.g. from walking 
forward to backward and to turning left and right, 
the simplest way is to perform a 180 degree phase 
shift of the sinusoidal signals which drive the 
thoracic joints. To do so, the velocity regulating 
network (VRN) is introduced. The network used is 
taken from [41]. It performs an approximate 
multiplication-like function of two input values x, y 
∈ [-1, +1]. For this purpose the input x is the 
oscillating signal coming from the neural oscillator 
network to generate the locomotion and the input y 
is the sensory signal coming from the neural 
preprocessing network to drive the reactive 
behavior. The output signal of the network will be 
used to drive the thoracic joints. Fig. 9A presents the 
network consisting of four hidden neurons and one 
output neuron. Fig. 9B shows that the output signal 
which  gets a phase shift of 180 degrees, when the 
sensory signal (input y) changes from -1 to +1. 

 
3.4 THE MODULAR 

NEUROCONTROLLER  
The combination of all three networks (modules) 

leads to an effective neural network for reactive 
behavior control in changing environments. On the 
one hand, one oscillating output signal from the 
neural oscillator network is directly connected to all 
basal and distal joints. On the other hand, the other 
output is connected to the thoracic joints only 
indirectly, passing through all hidden neurons of the 
VRNs through the so called x-inputs. The outputs of 
the signal processing network are also connected to 
all hidden neurons of the VRNs as y-inputs. Thus, 
the rhythmic leg movement is generated by the 
neural oscillator network and the steering capability 
of the walking machine is realized by the VRNs in 
accordance with  the outputs of the signal processing 

 
 

Fig. 9.  (A) The VRN with four hidden neurons and 
the given bias terms B which are all equal to -2.48285. 
The Input x is the oscillating signal coming from the 

neural oscillator and the Input y is the output signal of 
the neural preprocessing. (B) The output signal (solid 

line) when the input y is equal to +1 and the output 
signal (dashed line) when the input y is equal to -1. 

 

network. The structure of this controller and the 
location of the corresponding motor neurons on the 
walking machine AMOS-WD06 are shown in      
Fig. 10. 

 
4. EXPERIMENTS AND RESULTS 

The performance of the modular neural network 
shown in Fig. 10 is firstly tested on the physical 
simulation with a complex environment (see Fig. 3) 
and then it is downloaded into the mobile processor 
of the AMOS-WD06 for a test on the physical 
autonomous robot. 

The simulated walking machine and the physical 
walking machine behave qualitatively. The sensory 
information of IR sensors is used to modify the 
machine behavior as expected from a perception-
action system. If the obstacles are presented on 
either the right or the left side, the controller will 
change the rhythmic movement at the thoracic joints 
of the legs, causing the  walking  machine  to turn on       
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Fig. 10. (A) The modular neurocontroller. It generates a tripod gait which is modified when obstacles are 
detected. The bias terms (B) of the VRNs are again all equal to -2.48285. Six IR sensors are directly connected to 

the input neurons of the signal processing network. If the obstacle is detected, the outputs of the signal 
processing make the walking machine turn because the VRNs change the quasi-periodic signals at the thoracic 

joints. (B) The layout of all motor and input neurons of the AMOS-WD06. 
 
the spot and immediately avoiding the obstacles. In 
some situations, like approaching a corner or a 
deadlock situation, the preprocessing network 
determines the turning direction. The modification 
of the motor neurons with respect to the sensory 
inputs is exemplified in Fig. 11.  

M0, M1 and M2 of the thoracic joints (compare 
Fig. 11, left) are turned into the opposite direction 
because one of the left sensors (here, IR4) detects 
the obstacle. On the other hand, M3, M4 and M5 of 
the thoracic joints are turned into the opposite 
direction   when, at  least,  one  of  the  right  sensors  
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Fig. 11. Left: The left sensor (IR4) detected the 
obstacle while the other sensors (IR1, IR2, IR3, IR5 

and IR6) did not detect the obstacle; this caused motor 
neurons (M0, M1 and M2) on its right to change into 

the opposite direction. As a result, the walking 
machine will turn right. Right: If the obstacle is 

detected at the right of the walking machine (here, it 
was detected by only IR1), then the motor neurons 

(M3, M4 and M5) on its left are reversed. 
Consequently, the walking machine will turn left. 
 

(here, IR1) is active (compare Fig. 11, right). In 
special situations, e.g. walking toward  a  wall or  
detecting  obstacles on both sides, IR sensors of both 
sides may be active simultaneously. Thus, M0, M1, 
M2, M3, M4 and M5 of the thoracic joints are 

reversed which causes the walking machine to walk 
backward and eventually it is able to leave the wall. 
Fig. 12 presents the example reactive behavior of the 
walking machine driven by the sensory inputs 
together with the modular neurocontroller. A series 
of photos on the left column in Fig. 12 shows that 
the walking machine can escape from a deadlock 
situation and it can also protect its legs from 
colliding with the legs of a chair (see middle column 
in Fig. 12). Moreover, it was even able to turn away 
from the unknown obstacles which were sensed by 
the sensors at the forehead and then were detected 
by the sensors on the left legs (see right column in 
Fig. 12). More demonstrations of reactive behaviors 
of the AMOS-WD06 are referred to video clips at, 
www.chaos.gwdg.de/~poramate/AMOSWD06.html. 

 As demonstrated, the modular neurocontroller is 
adequate to successfully complete the obstacle 
avoidance task. Due to the capability of the 
controller, the walking machine can perform an 
exploration task (wandering behavior) without 
getting stuck in the corner or the deadlock-like 
situation.  
 

5. CONCLUSION 
The six-legged walking machine AMOS-WD06 

is presented as a reasonably complex robot platform 
to test a neurocontroller generating the robust 
sensor-driven exploration and obstacle avoidance 
behaviors. The modular neurocontroller was 
designed as a neural network consisting of a signal 
processing network for preprocessing IR signals, a 
neural oscillator network for generating basic 
locomotion, and the velocity regulating networks 
(VRNs) for changing the locomotion appropriately. 
The controller is used to generate the walking gait of 
the machine and enable it to perform the reactive 
behavior; for instance, exploring an in-door 
environment by wandering around, avoiding 
obstacles when they are detected, and leaving from a 
corner-like deadlock situation. The controller has 
been tested successfully in the physical simulation 
environment as well as on the real world walking 
machine. Thus, we were able to reproduce these 
basic behaviors, generally achieved for wheeled 
robots, also for a machine with many degrees of 
freedom. The generated behaviors are of course 
essential for an autonomous walking machine. More 
demanding tasks will be related to the use of 
additional sensors. Therefore, future research we 
will make use of auditory signals coming from a 
stereo auditory sensor. It will be used for navigation 
based on sound tropism. Finally all these different 
reactive behaviors will be fused into one modular 
neurocontroller, where modules have to cooperate or 
compete as in versatile perception-action systems. 
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Fig. 12. The  Examples of the behavior driven by the IR sensors of the AMOS-WD06. Left: The AMOS-WD06 
escaped from a corner-like deadlock situation without getting stuck. Middle: It was able to protect its legs from 

colliding with the leg of a chair which was detected by the sensors installed on the right legs. Right: It turned 
away from the unknown obstacles which was detected by the sensors at the forehead (IR1 and IR4) and then at 

the  left legs (IR5 and IR6). 
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