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Abstract. This case study demonstrates how the synthesis and the
analysis of minimal recurrent neural robot control provide insights into
the exploration of embodiment. By using structural evolution, minimal
recurrent neural networks of general type were evolved for behavior con-
trol. The small size of the neural structures facilitates thorough inves-
tigations of behavior relevant neural dynamics and how they relate to
interactions of robots within the sensorimotor loop. We argue that a clar-
ification of dynamical neural control mechanisms in a reasonable depth
allows quantitative statements about the effects of the sensorimotor loop
and suggests general qualitative implications about the embodiment of
autonomous robots and biological systems as well.

1 Introduction

The framework of embodied artificial intelligence has impressively demonstrated
that problems in behavior control of autonomous robots seem to be very hard
if approached from a mere computational perspective, but turn out to be sur-
prisingly simple when characteristics of the sensorimotor loop are taken appro-
priately into account [1]. The challenge is that we usually do not know a priori
what “appropriate” means, because the sensorimotor loop involves all the physi-
cal properties of the robot (inertia, friction, resonances, shape, etc.) as well as its
interaction with the world. Therefore, Evolutionary Robotics (ER) is proposed
as a promising testbed for studying the power of embodiment [2, 3]. Artificial
evolution provides the exploration of hitherto unknown and efficient solutions
by reducing prejudices and predispositions made by a human designer [4].

As an example, Nolfi [5] describes the emergence of modularity in evolved
neural control, which does not correspond to task decomposition as a human
observer would assume. Based on such networks, Ziemke [6] emphasizes the rel-
evance of recurrent neural networks (RNNs) in the context of multi-functional
and context-sensitive behavior control. In contrast, Suzuki et al. [7] demonstrate



how a simple feed-forward structure in conjunction with robot-environment in-
teractions realizes robust and adaptive behavior control through complex visual
sensorimotor mappings.

Within the realm of feed-forward and recurrent neural control quantitative
statements about the properties of the sensorimotor loop are needed [8]. It should
be clarified where recurrent neural control structures are necessary and where
simple feed-forward mappings are sufficient if the body, the dynamics of the
environment, and the action-perception processes of a robot are taken into ac-
count. The difficulty in deriving qualitative statements from the effects of the
sensorimotor loop is twofold. On the one hand, it is impossible to find a formal
description of the sensorimotor loop including all relevant aspects. On the other
hand, if RNNs are used for complex behavior control, usually only the param-
eters, but not the structure, of a predefined neural network are optimized by
evolution. In the majority of the cases, the resulting control structures are high
dimensional systems. But high dimensionality makes it practically infeasible to
clarify whether complex behavior is basically generated by the control structure
or results from robot-environment interactions.

While the first point let us conclude that qualitative statements about the
impact of the sensorimotor loop on robot control can be made only indirectly,
that is, based on a reasonable understanding of the evolved neurodynamics. The
second aspect, namely high dimensionality, seems to counter it. The objective
of this paper is to introduce a strategy in ER supporting this approach termed
as synthesis and analysis of minimal recurrent neural robot control. Further on,
we will give representative examples where an application of this strategy has
provided us with enlightening examples demonstrating the importance of the
sensorimotor loop on behavior control for autonomous mobile robots. The exper-
iments will show how robot-environment interactions give rise to integrated and
induced oscillations, the use of transient effects, and the emergence of rhythms
and behavior coordination. All these examples show how complex behavior rel-
evant dynamics provided by RNNs are modulated by the sensorimotor loop.

2 Synthesis and analysis of minimal recurrent neural

controllers

We are using a standard additive neuron model with sigmoidal transfer function
f(x) and discrete time dynamics: ai(t + 1) = Θi +

∑n

j=0
wij · f(aj(t)) , i =

1, . . . , n , where ai is the activation of neuron i, wij the weight of the synapse
projecting from neuron j, and Θi the bias term. Already small recurrent net-
works of this type can generate complex dynamics [9]. That’s why we apply an
evolutionary algorithm called ENS3 (evolution of neural systems by stochastic

synthesis) to evolve neural connectivity structure (hidden neurons and synapses)
and optimize the corresponding parameters (weight and bias terms) at the same
time. By modifying certain stochastic variation operators, such as the insertion
and deletion probability for structural elements, during evolution we are able
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Fig. 1. A reactive light seeking controller (f(x) = σ(x) = 1/(1+e−x)) utilizing switch-
able period-2 oscillations for speed control (see text for details).

to enforce the development of minimal neural structures (with respect to the
number of hidden neurons and synapses) [10].

To understand the origins of behaviorally relevant dynamics, it is important
to clarify the contribution of minimal recurrent neural networks. In some oc-
casions, it is possible to directly derive behavior relevant dynamical properties
from the structure and parameters of the RNN. But mostly, it is almost impos-
sible to also include the dynamics of robot-environment interactions in order to
explain the observed behavior in detail.

In the following we do not provide further details with respect to the pa-
rameter settings of the evolutionary processes. Our focus lies exclusively on the
dynamical properties of specific control structures, chosen by us as the best
examples, demonstrating the essential mechanisms of frequently observed phe-
nomena.

Behavior control by frequency modulation. It is well known from analytical inves-
tigations that over-critical negative self-connections of single neurons can gen-
erate switchable period-2 oscillations [11]. Analyses of the RNN in Fig. 1 have
shown that the behavior control is actually provided by such switchable oscilla-
tors. This controller solves a light seeking task.

The diagrams in Fig. 1 (right) show two examples where a period-2 oscillation
is modulating the behavior of a Khepera robot. The upper diagram shows the
on-off switch of period-2 oscillations of output neuron O2. The switching is
determined by the left proximity sensor (given by I1), that is, a switch-on causes
a turn to the right. A period-2 oscillation is also used in front of a light source
to generate a stop (Fig. 1, right bottom). In this situation the oscillation is
determined by the increased activation of the frontal light sensor (I4). In contrast
to the turning, both output neurons are synchronously oscillating with period-2
(not shown).

This controller demonstrates, that oscillating output signals can be used for
behavior control since the body of the robot operates as an integrator. According
to the inertia of the robot’s body, effective motor actions result from the mean
network output signals. If the robot is standing in front of a light source, both
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Fig. 2. A: The robot micro.eve. B: RNN of one arm (f(x) = tanh(x)). C: Neuron
output (see text for details).

outputs are permanently oscillating between 1 and 0. Hence, the mean over time
is 0.5. Due to the applied post-processing an effective motor signal of 0.5 repre-
sents a motor speed of zero. Such effects are not superficial results of artificial
evolution. Morris and Hooper [12] demonstrated that in biological systems slow
muscle contractions are coded by the average amplitudes of fast rhythmic neural
activities.

Induced oscillations. Fig. 2 shows an example where motor oscillations are in-
duced through the environmental loop. The ring-shaped robot micro.eve (Fig. 2A)
is placed on two passive rollers on which it can rotate around its body center by
moving the five independent arms in order to translate the overall center of mass
in a coordinated way. For further details about the robot and different control
strategies see [13].

Here, the presented RNN (Fig. 2B) is one out of five completely autonomous
networks which independently control one of the five arms. Because of infor-
mation provided by the hall sensor I1 and the gyroscope I2 (both part of the
ring) every RNN gets information about the movement of the common body.
Therefore, single controllers can “sense” the resulting effects of the other con-
trollers’ behavior. I3 gives information about the current motor position of the
controlled arm. The output neuron signal O1 represents the motor command
for the servo motor. As one can see in Fig. 2C the signal is oscillating since the
hall sensory input remains zero at the beginning where the robot has to initiate
its own rotational movement. These oscillations can not be deduced from the
dynamical properties of the network, because there are no recurrent connections
which can provoke oscillations. Instead, they are caused by the loop through
the environment (dashed line in Fig. 2B), which can be described as a reflex
oscillator.

The output of O1 is sent to the servo motor, and due to the motor’s inertia
and friction the desired position is reached with a certain delay. The current
position of the motor is fed back to the network through I3 which has a strong
negative connection to O1. Therefore, O1 produces signals inverse to the current
motor position, and this causes the observed oscillations. These oscillations are
of utmost importance for initiating a rotation of the ring at all [13]. As soon as
the ring starts to rotate, the hall sensor becomes active and due to the much
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Fig. 3. A: Neural single-leg controller (f(x) = tanh(x)). B: Hysteresis of neuron O2
(see text for details).

stronger connection from this sensory input (I1) the aforementioned oscillations
are suppressed depending on the signal strength of I1 (see Fig. 2C).

Summarizing these two examples, we can say that in both cases fast oscil-
lations provide important behavior relevant dynamics. However, they differ in
their origin. In the first case the oscillations result from the neurodynamics of
the RNN. In the second experiment these oscillations emerge from the ongoing
robot-environment interactions.

Neural hysteresis in reflex-walking-control. In this section the role of a hystere-
sis element in a simple neural reflex-oscillator for single-leg (3DOF) control of
walking machines is demonstrated. The controller shown in Fig. 3A is one of
the simplest and yet one of the most effective controllers found during evolution
experiments for the task of forward walking [14]. How does this structure, us-
ing only one sensory neuron (neuron I1, encoding angular position of joint 1),
three motor neurons (neurons O1, 2, 3, specifying the desired angles to the servo
motors), and four synapses, produce a coordinated walking pattern of a 3DOF
leg?

All neurons used for control are connected in a loop (I1−O2−O3−O1−I1)
which passes through the environment from neuron O1 to neuron I1 (dashed
line). This sensorimotor loop results in a nonlinear transformation which can
be approximated as a negative feedback with a time delay, resulting in a slow
oscillatory movement (compare to the aforementioned description of a reflex-
oscillator for the micro.eve robot).

During the oscillatory movement it was found that the motor-neurons ap-
proximately act as bistable elements. The bistability can be explained by the
property of neuron O2. Neuron O2 plays a major role in the controller network.
It is the first neuron in a chain which directly couples all motor neurons. The
following motor neurons therefore have either the same phase or a phase shifted
by 180 degrees (neuron O3 in phase, neuron O1 in antiphase) when compared
to neuron O2. Neuron O2 has a self-connection larger than 1.0 which makes it a
hysteresis element [11]. In Fig. 3B the output of neuron O2 is plotted against its
input under actual walking conditions (outer curve). The plot shows two effects
of the hysteresis element: First, the bistability may be explained by two stable
fixed points of the hysteresis domain (≈ {−1, 1}). Second, the hysteresis element
may be approximated as a time delay which adds to that of the environmental
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Fig. 4. A: A RNN (f(x) = tanh(x)) realizing low-pass filtering at ≈ 300 Hz. B,C:
Input signal at increasing frequency (from 100 Hz to 1 kHz, 48 kHz sampling rate) and
the corresponding output signal. D: The hysteresis effects between input and output
signals at certain frequencies.

loop, therefore contributing to the slow and smooth oscillating walking move-
ment. Finally, it may be noted that the transient is modulated by the frequency
of the input signal. Under extremely slow (theoretical) walking conditions (inner
curve of neuron O2 input/output plot) the transient approaches the hysteresis
of the system, and therefore becomes much narrower than during actual walking
conditions.

Neural processing of auditory signals. Inspired by evolved robot control we de-
duced a neural structure that realizes a simple hysteresis element (called dynam-
ical neural Schmitt trigger, Fig. 4A). The structure has three parameters that
define the width and the shift of the hysteresis domain [15]. For applications it
is usually assumed that input signals vary only slowly with respect to the net-
work update. But how do the dynamical properties of the neural Schmitt trigger
change when the input values change on arbitrary time scales?

Fig. 4 shows an example where a time series of a continuously increasing
frequency is fed into a RNN. At a certain frequency the output remains in
the lower saturation domain of the output neuron. Hence, one may argue that
hysteresis elements behave as a low-pass filter [16]. We have successfully adapted
such a structure to filter background noise of a walking machine and even to
recognize low-frequency sounds (i.e., 200 Hz) to perform a sound tropism [16].
These applications demonstrate how a sensory driven dynamical system becomes
sensitive to the frequency of the input signal.

The effect of filtering high-frequency signals itself can be explained by the
shift of the hysteresis domain and the transients of the system. The self-connection
determines how fast (i.e., needed number of time steps) the neuron activation
ends near the fixed point. For the isolated system we have stable fixed points in
the lower and upper saturation domain (i.e ≈ {−1, 1}). When the input signal is
continuously changing, the fixed points vary only slightly and if the amplitude is
large enough one observes the characteristic jumps at the end of the hysteresis
domain. However, when a high frequency input signal is applied, because of the
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Fig. 5. The recurrent neural network producing a motivational driven robot behavior
and the resulting behavior in simulation. The diagram shows the level of energy (I6,
black) and activation of the frontal light sensor (I4, grey) during the interaction (f(x) =
σ(x) = 1/(1 + e−x)).

slowness of transient dynamics these fixed points are never approached and at
a certain frequency orbits may stay near one or the other fixed point. Due to
the slowness of the transient dynamics these fixed points are never reached and
at a certain frequency the orbits may stay near one or the other fixed point if a
high frequency input signal is applied. Our presented system has a cut-frequency
of ≈ 300Hz (compare Fig. 4C). Here, the upper saturation domain will never
be reached as a consequence of these slow transients and the bias term. Thus,
high-frequency oscillations are suppressed, and therefore, the system acts as a
low-pass filter.

Reflex-walking-control and the low-pass filter are both based on bistable
elements. The specific control signals, however, are determined by the frequency
of the input signals modulating the transients of these hysteresis elements. Both
examples, therefore, indicate how one and the same element can act in different
ways due to its modulation by the sensorimotor loop.

Rhythmic behavior switching For the study of behavior switches provided by
complex neural dynamics we evolved a RNN to develop a motivational driven
robot behavior. We call a robot behavior motivational driven, if the neural con-
trol is not only determined by current sensor states of external stimuli but also
by an internal level of energy.

As a first simple example for such a motivational driven behavior we used
again the Khepera robot and extended a reactive light seeking module (by struc-
ture evolution) to a control structure which maintains a certain level of energy
while the robot accomplishes an exploration behavior. A resulting network is
shown in Fig. 5. As one can see, the already introduced input-output-structure
of the reactive light seeking module (see Fig. 1) is extended by one input neuron
I6. This neuron indicates the current level of the simulated energy reservoir,
which is defined as follows: I6(t + 1) := I6(t) + c1 · I4(t) − c2, c1, c2 > 0. The
constant loss of energy can only be compensated by standing in front of a light
source (i.e., by high activations of the frontal light sensor I4).
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Fig. 6. An internal rhythm generator (f(x) = σ(x) = 1/(1 + e−x)), and how it can be
influenced by sensory stimuli.

The resulting robot behavior in simulation is also shown in Fig. 5. One can see
that the robot switches between exploring the environment and standing close
to a light source. The diagram in Fig. 5 indicates that the behavior switches are
determined by the level of energy. At a certain intensity of I6 (≈ 0.8) the robot
is leaving the light source. Further on, the output I6 is characterized by slow
oscillations. But, these slow oscillations are determined by the properties of the
energy reservoir (i.e., c1,2 in the equation above) and by the robot-environment
interaction. Notice, that this issue leads us to a cyclic causality: on the one
hand, I6 is determining the behavior switches, and, on the other hand, I6 is
determined by the robot-environment interaction. The slow oscillations emerge
from the sensorimotor loop.

Synchronized rhythms Fig. 6 (left) shows an implementation of a neural rhythm
generator. It is based on a two neuron loop, called SO(2)-network [17]. These
networks with a special weight matrix generate quasi-periodic oscillations with
a sine-shaped wave form. The period of these oscillations depends only on one
parameter in the weight matrix. The coupling of two identical SO(2)-networks
can realize stable oscillations with very large periods [18]. There, a concrete
implementation of the rhythm generator is used to coordinate competing behav-
iors in groups of up to 150 robots. Each robot is equipped with its own internal
rhythm, that is, each robot has a slightly different frequency, which is reminiscent
of circadian rhythms found in animals [19]. This rhythm determines whether the
robot searches and collects food in the environment or returns to a home area
where the collected energy is transfered to the common nest of the group. To
maximize the energy level of the nest, it turned out that a coordination of the
single behaviors is of great advantage, because the interferences resulting from
the interactions of up to 150 robots in a shared environment lead to tremendous
mutual obstructions [18].

To achieve a coordinated foraging and homing behavior within the whole
group the single rhythms have to become synchronized. In doing so, a robot
needs the ability to communicate its internal state to other robots. One output
neuron (O1 in Fig. 6, left) triggers a sound signal when it reaches a certain
threshold. This neuron is coupled to the pattern generator in a way, that sound
signaling occurs during the switch from zero to one of the output of neuron



H5 which amplifies the sine-shaped oscillations of the rhythm generator (Fig. 6,
right). This signal can be perceived by nearby robots through the sensory input
neuron I1. In turn, this perception provokes a phase reset as it can be seen for
H5 in Fig. 6 (right). This mechanism allows behavior synchronization within a
large robot group through minimal local communication. The resulting synchro-
nized collective behavior is a result of local robot-robot and robot-environment
interactions.

The impact of slow varying inner rhythms for behavior control has in fact
already been demonstrated for robotic applications (see [18]). However, the last
two experiments provide minimal examples for the emergence as well as the
synchronization of slow oscillations within the sensorimotor loop and for both
cases the essential elements of the interplay between internal neural dynamics
and external world can be clearly indicated.

3 Conclusions

In this paper we have presented six examples where the evolution of minimal
recurrent neural networks for embodied agents explores the dynamics of robot-
environment interactions. We have seen how oscillations can be integrated by
the body of a robot or even induced by the sensorimotor loop through the envi-
ronment. Furthermore, in neural structures with equivalent dynamical proper-
ties transient effects resulting from robot-environment interactions are used for
completely different tasks, such as the locomotion in walking machines and the
filtering of auditory signals. Finally, through interactions with the environment
internal rhythms determining differing behavior patterns can emerge in individ-
uals or even become synchronized within large robot groups. Only by thoroughly
analyzing evolved RNNs in the context of robot-environment interactions it was
possible to reveal the interrelation between internal and external mechanisms
underlying the evolved robot behavior.

The dynamical systems approach to adaptive behavior is still at its beginning
in the context of ER experiments (e.g., [20, 2]). And only very few studies involve
thorough analyses of the evolved neural mechanisms (e.g., [20]) which can help
to better understand the dynamical mechanisms underlying complex behavior
and to clarify which behavioral aspects can be accounted to internal dynamics
or to properties emerging from the sensorimotor loop.

However, our approach does not only advance our understanding of these
issues. It also enables us to construct highly efficient neural control systems by
considering the sensorimotor loop to minimize the complexity required at the
neurodynamics level. Our examples demonstrate that the evolution of minimal
recurrent neural robot control enforces the development of simple networks (con-
cerning their size, not their dynamics). This makes it possible to extract and set
up basic neural structures together with their functions in a respective senso-
rimotor loop. Provided with such building blocks one then should be able to
develop gradually more and more elaborated behavior control for autonomous
robots with a richer sensomotoric equipment.
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