
Neural Preprocessing of Auditory-Wind Sensory Signals and
Modular Neural Control for Auditory- and Wind-Evoked

Escape Responses of Walking Machines

Poramate Manoonpong and Florentin Wörgötter
Bernstein Center for Computational Neuroscience

University of G̈ottingen
Bunsenstr. 10, 37073 G̈ottingen, Germany
{poramate, worgott}@nld.ds.mpg.de

Frank Pasemann
Institute of Cognitive Science

University of Osnabr̈uck
Albrechtstr. 28, 49069 Osnabrück, Germany

frank.pasemann@uni-osnabrueck.de

Abstract— The flying crickets Teleogryllus oceanicus
have sound sensitive organs to elicit an “acoustic startle
response”. Another kind of the startle response is also evident
in the cockroaches Periplaneta and the crickets Gryllus
bimaculatus where they use their cercal filiform hairs (wind
sensitive hairs) to trigger so called “wind-evoked escape
behavior”. Similarly, in this paper a setup is described where
an auditory-wind detector sensor and a neural preprocessing
system together with a modular neural controller are used
to simulate such animal behaviors in an abstract form on a
six-legged walking machine. The neural preprocessing network
acts as a low-pass filter and sensory shaping unit. In addition,
the modular neural controller then generates the desired
responses such that the machine performs a fast movement
away from abrupt, intense, and unexpected auditory and/or
wind stimulus in a physical environment.

Index Terms— Biologically-inspired robots, Autonomous
hexapod robots, Neural control, Recurrent neural networks.

I. I NTRODUCTION

Animals show a variety of fascinating behaviors driven
by their sensing systems. For example, the flying crickets
Teleogryllus oceanicus have sound sensitive organs in their
forelegs. Through this sensing system, the flying cricket
exhibits a startle response called “acoustic startle response”
[1] which is stereotyped escape behavior involving a fast
movement away from abrupt, intense (loud), and unexpected
stimuli. In brief, the pulses of suprathreshold ultrasound
(e.g., 30 kHz at around 60 dB sound pressure level (SPL))
produced by predatory bats cause it to fly faster away from
the ultrasound generator. Another kind of the startle response
is also evident in the cockroachesPeriplaneta and the
cricketsGryllus bimaculatus. They use their cercal filiform
hairs (wind sensitive hairs) [2] to elicit so-called “wind-
evoked escape behavior” [3]; i.e., they turn and then run away
from a wind puff to their cerci generated by the lunging
predator. All these startle responses are implicated in the

context of escape responses or predator avoidance behaviors
induced by warning signals, e.g., sound and/or a wind puff.
Inspired by the acoustic startle response and wind-evoked
escape behavior together with the corresponding sensing
systems, we introduce here a simple combined auditory-wind
detector sensor and its neural signal processor which is able
to reproduce such animal behaviors in an abstract form on
a walking machine through a locomotion generator called
modular neural control.

There are several examples of experiments with robots that
use auditory signals and/or wind puffs for generating reactive
robot behaviors [4], [5], [6], [7]. These sensory information
are practically obtained from different sensor channels. In
other words, roboticists have not yet implemented these two
sensor functions (detecting sound and wind puffs) into one
sensor system to save electrical power consumption. In addi-
tion, the sensor signals are mostly analyzed by using principle
engineering techniques, e.g., a Fast Fourier Transformation
or diverse filter techniques [8]. Often these methods are too
slow to generate reactive actions of machines, too complex,
and computationally too expensive to achieve the optimal
performance and to implement on mobile processors, e.g., a
personal digital assistant (PDA).

In contrast, we make use of one sensor for obtaining both
sound and wind puff information where the preprocessing of
sensory signals is achieved by a simple and analyzable recur-
rent neural network. Together with modular neural control,
this will enable our autonomous walking machine to react
to high-intensity sound and a wind puff by simply running
away from the sources1 in a real environment.

However, the main purpose of this article is not only to

1Thehigh−intensity ultrasound generated by the predatory bats and the
rapidly accelerating wind puff produced by the lunging predator are replaced
by high − intensity sound (> 48 dB of 300 Hz) generated by stereo
portable speakers and a wind puff produced by a computer fan, respectively.
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present the sensory system and demonstrate the walking ma-
chine performing the biologically-inspired reactive behavior
but also to investigate the analyzable neural mechanisms
underlying this approach in order to understand their inherent
dynamical properties. Furthermore, in this study we will try
to show that neural preprocessing and control can be a pow-
erful technique to better understand and solve sensorimotor
coordination problems of many degrees-of-freedom systems
like sensor-driven walking machines.

The following sections (II and III) describe the technical
specifications of the artificial auditory-wind detector sensor
and the walking machine, respectively. Section IV explains
the neural perception-action system for a reactive escape be-
havior. The experiments and results are discussed in Section
V. Conclusions and an outlook on future research are given
in the last section.

II. A N ARTIFICIAL AUDITORY -WIND DETECTOR SENSOR

The artificial auditory-wind detector sensor is applied from
[9], [10] where the use of the sensor for auditory and wind
detection was not investigated. It is used here to detect audi-
tory and wind puff stimuli which control auditory- and wind-
evoked escape responses. The sensor is composed of a mini-
microphone (0.6 cm diameter) built in an integrated amplifier
circuit, a root and a whisker-shaped material taken from a
whisker of a real mouse (3.0 cm long). The mouse whisker
is selected for our purpose here because of its appropriate
mechanical properties (elasticity, stiffness, moment of inertia)
which have been investigated in [10]. Figure 1 shows the
sensory components.

In order to construct this sensor, the mouse whisker was
inserted into a root which was glued onto the diaphragm of a
microphone. The main purpose of implementing the whisker
here is to improve the response of the sensor to a wind
puff (shown in Section V). That is the physical force of the
whisker vibrates the diaphragm of the capacitor microphone,
which results in a voltage signal. The signal is amplified via

Whisker 

Root

Microphone

(A) (B)

Fig. 1. (A) The real auditory-wind detector sensor including a preamplifier
circuit installed at the rear part of the six-legged walking machine AMOS-
WD06. (B) The drawing of assembly parts of the sensor.
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Fig. 2. (A) The response of the sensor to a wind puff which is generated
by a small fan taken from a power unit of a personal computer (PC). (B)
The response of the sensor to an auditory signal at a frequency of 300 Hz
and a sound pressure level of around 52 dB which is generated by stereo
portable speakers (Sony Ericsson MPS-70). Note that the sensor can detect
only the amplitude of the sound because of a low sampling rate of the
A/D converter board. However it is adequate to trigger the auditory escape
response. (C) The fan and a mobile phone with the stereo portable speakers
used to generate a wind puff and sound, respectively.

the integrated amplifier circuit where the maximum output
voltage with respect to the given input signals, e.g., auditory2

and wind puff stimuli, is around 5 volt DC. The raw sensory
signals are presented in Fig. 2.

To obtain these sensory signals, the sensor is interfaced
and digitized via the analog to digital channels of the Multi-
Servo IO-Board (MBoard). Subsequently, the digital signals
are here sent to a PDA through an RS232 interface at a
transfer rate of 57.6 kbits/s for the purpose of monitoring
and feeding the data afterwards into a neural preprocessor.
The preprocessed sensory signals will enable our walking
machine to autonomously perform the desired biologically
inspired reactive behavior.

III. T HE REACTIVE WALKING MACHINE AMOS-WD06

The six-legged walking machine AMOS-WD06 (see
Fig. 3) is a biologically-inspired hardware platform for
studying the coordination of many degrees of freedom, for

2Due to the characteristics of the portable speakers which provide appro-
priate loudness at a frequency range of 300 to 500 Hz for our sensor system,
we then select the auditory signal at the frequency of 300 Hz for testing the
sensor and stimulating the auditory escape behavior.
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Fig. 3. The physical six-legged walking machine AMOS-WD06. A right dashed frame shows the leg configuration with three DOF of the AMOS-WD06
in close-up view and the left one presents the location of the auditory-wind detector sensor (AW) and the rear infrared sensor (IR7).

performing experiments with neural controllers, and for the
development of artificial perception-action systems employ-
ing embodied control techniques.

It consists of six identical legs. Each leg has three joints
(three DOF): the thoraco-coxal (TC-) joint enables forward
(+) and backward (−) movements, the coxa-trochanteral
(CTr-) joint enables elevation (+) and depression (−) of the
leg, and the femur-tibia (FTi-) joint enables extension (+)
and flexion (−) of the tibia (see Fig. 3, right dashed frame).
Each tibia segment has a spring-like compliant element to
absorb impact force as well as to measure ground contact
during walking. All leg joints are driven by analog servo
motors. The machine is constructed with two body parts:
a front part where two forelegs are installed and a central
body part where two middle legs and two hind legs are
attached. They are connected by one active backbone joint
driven by a digital servo motor. This machine has six foot
contact (FC1,...,6) sensors, seven infrared (IR1,...,7) sensors,
two light dependent resistor (LDR1,2) sensors, one gyro
(GR) sensor, one inclinometer (IM) sensor, one upside-down
detector (UD) sensor, and one auditory-wind detector (AW)
sensor (see Fig. 3). The foot contact sensors are for recording
and analyzing the walking patterns [12]. The IR1,...,7 sensors
are used to elicit negative tropism, e.g., obstacle avoidance
and escape response [12], while the LDR1,2 sensors serve
to activate positive tropism like phototaxis [13]. The GR
and IM sensors apply to upward/downward slope detection.
The UD sensor is employed to trigger a self-protective reflex
behavior when the machine is turned into an upside-down
position [12]. Moreover, the AW sensor is applied here for the
auditory-wind application which is the main contribution of
this manuscript. It will activate the auditory- and wind-evoked
escape behavior of the walking machine. The control of this

walking machine is programmed into a PDA interfaced with
the MBoard. Electrical power supply of the whole systems
is via battery packs which can run for experiments up to
35 minutes (see [11], [12] for more details of the walking
machine system).

IV. A NEURAL PERCEPTION-ACTION SYSTEM

A neural perception-action system (see Fig. 4) generating
the auditory- and wind-evoked escape responses is formed
by two main components: a neural preprocessing unit and a
modular neural control unit. The neural preprocessing unit
filters sensory noise and shapes sensory data to drive the
corresponding reactive behavior. The modular neural control
unit, on the other hand, is used for locomotive generation of
the walking machine. It coordinates leg movements, regulates
walking speed, and generates omnidirectional walking. The
details of these two neural units are described in the following
sections.

The approach of signal preprocessing and locomotive
generation utilizes dynamical properties of recurrent neural
networks. The standard additive neuron model with sigmoidal
transfer function together with its time-discrete dynamics is
given by:

ai(t + 1) =
n∑

j=1

Wijσ(aj(t)) + Θi i = 1, . . . , n (1)

wheren denotes the number of units,ai their activities,
Θi represents a fixed internal bias term together with a
stationary input to neuroni, and Wij the synaptic strength
of the connection from neuronj to neuroni. The output
of the neurons in the neural preprocessing unit is given by
the standard sigmoidσ(ai) = (1 + e−ai)−1 while in the
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Fig. 4. The diagram of the neural perception-action system. The system
acts as a behavior controller, i.e., the sensor signals are passed through the
neural preprocessing unit into the modular neural control unit which directly
drives the actuators. As a result, the walking machine’s behavior is generated
by the interaction with its (dynamic) environment in a sensorimotor loop.

modular neural control unit is governed byσ(ai) = tanh(ai).
Input units are configured as linear buffers. They are linearly
mapped onto the interval [0, 1] for all neurons in the neural
preprocessing unit and [−1, 1] for those in the modular neural
control unit.

A. Neural preprocessing of auditory-wind sensory signals

The raw sensory signals coming from the auditory-wind
detector sensor are used to trigger the reactive auditory-
and wind-evoked escape behavior of the walking machine.
These types of reactive behavior can be described as a fixed
action pattern [11], which is a time-extended response pattern
activated by a stimulus. That is, the action perseveres for
longer than the stimulus itself. Once a fixed action pattern
has been activated, it will be performed even if the activating
stimulus is removed. To do so, a series of single recurrent
neuronsHNp1,2 is employed. Their output is combined at an
output neuronONp before feeding preprocessed signals to
modular neural control for activating a corresponding reactive
behavior. The complete neural preprocessing network is
shown in Fig. 5A. This simple preprocessing network has
a capability to eliminate unwanted noise, shape the sensory
data, and prolong the activation time of sensory signals (see
Fig. 6).

On the background of the well understood functionality
of a single recurrent neuron [11], [14] we manually con-
structed the network according to dynamical properties of
the recurrent neuron, i.e., hysteresis effect [11], [14]. The
neural parameters of the network were manually adjusted as
follows. We adjusted the raw sensory inputsRAW − AW
such that they will cross forward and backward through the
hysteresis domain to mainly filter sensory noise. By doing
so, we set a synaptic weight connecting between raw sensory
inputsRAW −AW andHNp1 to a positive value, i.e., 4.3,
to amplify the signals. Afterwards, we shifted the amplified
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Fig. 5. (A) The structure of the neural preprocessing unit with appropriate
weights. Note that one can optimize this network, for instance by using an
evolutionary algorithm [15], but for the purposes of signal preprocessing
and controlling the desired reactive behaviors, it is good enough. (B), (C)
Hysteresis effects between the input and output of the recurrent neuron
HNp1 and the recurrent neuronHNp2, respectively. Thepresynaptic
input of all recurrent neuronsHNp1,2 varies between 0.0 and 1.0 while the
output ofHNp1 andHNp2 has low (≈ 0.0) and high (≈ 1.0) activations
at different points. The output ofHNp1 will show high activation when the
input increases to values above 0.61. On the other hand, it will show low
activation when the input decreases below 0.19. For the output ofHNp2,
it will show high activation when the input increases to values above 0.73
while it will show low activation when the input decreases below 0.03.

signals by a negative bias term, i.e.,−5.5. Consequently, the
modified signals sweep over the input interval between−5.5
and−1.2. Finally, we tuned the self-connection weight of
the neuron to derive a reasonable hysteresis interval on the
input space; i.e., 7.5. This hysteresis effect allows the output
to show high (≈ 1.0) and low (≈ 0.0) activations at different
points (see Fig. 5B). By utilizing this feature, the recurrent
hysteresis neuronHNp1 performs as a low pass filter which
can eliminate unwanted noise, i.e., motor sound while the
machine walks. The output ofHNp1 (filtered signals) is fed
into another neuronHNp2 where its structure was configured
in the same manner asHNp1. Only, the neural parameters
were set differently. We chose them in the way that they
derive a large hysteresis interval on the input space (see
Fig. 5C) which will extend the duration of response (see
Fig. 6). As a result, the connection weight between neurons,
the bias term, and the self-connection weight are empirically
set as 3.0,−5.15, and 8.0, respectively. With this setup,
we obtain the appropriate long activation time of our robot
system.

Eventually, the output of each recurrent neuron is amplified
through a connection weight set to 8.0 before adding at the
output neuronONp. Afterwards the output ofONp is trans-
mitted to modify all synaptic weights of a neural oscillator
network in a modular neural control unit (see Figs. 5A and 7)
described in the next section. As a result, the walking speed
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Fig. 6. (A), (B) The sound and wind puff signals before (RAW −AW )
and after (ONp) preprocessing. Gray areas show background noise while
the machine walks. In order to obtain longer activation time, one can simply
add more recurrent neuronsHNp2 in series and combine their output at the
output neuronONp in the same manner as shown in Fig. 5A.

of the machine will be increased as soon as a wind puff
and/or an auditory signal are detected.

B. Modular neural control for a reactive behavior

Actions or walking behaviors of the machine are generated
through modular neural control. This modular controller con-
sists of three subordinate networks3 (colored boxes in Fig. 7):
a neural oscillator network, a phase switching network (PSN),
and two velocity regulating networks (VRNs). The neural
oscillator network, serving as a central pattern generator
(CPG) [16], generates periodic output signals. These signals
are provided to all CTr-joints and FTi-joints only indirectly
passing through all hidden neurons of the PSN. TC-joints
are regulated via the VRNs. Thus, the basic rhythmic leg
movement is generated by the neural oscillator network and
the steering capability of the walking machine is realized by
the PSN and the VRNs.

The synaptic weights and bias terms of the neural oscillator
network (see colored box A in Fig. 7) are selected in accor-
dance with the dynamics of the 2-neuron system [17] staying
near the Neimark-Sacker bifurcation where the quasi-periodic
attractors occur. They are empirically adjusted through the
Integrated Structure Evolution Environment (ISEE) [15] to
acquire the optimal periodic output signals for generating
locomotion of the walking machine. The example of periodic

3Here, we discuss only main functions of the network. A more complete
description of each subordinate network is given in [11], [12].

output signals having different frequencies resulting from
different weights can be seen at [11], [12]. The network
has the capability to generate various sinusoidal outputs
depending on the weights. For instance, changing weights in
a proportional way (see [12] for details), the system dynamics
still stays near or beyond the Neimark-Sacker bifurcation
[17], resulting in an increased frequency of the sinusoidal
outputs of the network. Correspondingly, the amplitude of
the signals will also slightly increase. Thus, we will use the
preprocessed auditory and wind puff signals to modify all
weights of the network determined by Eqs. 2, 3, 4:

w11,22 = 0.75ONp + 1.125, (2)

w12 = 1.5ONp − 0.35, (3)

w21 = −1.5ONp + 0.35, (4)

As a consequence, walking speed of the machine can
be increased by the activation of these signals, resulting in
simple auditory- and wind-evoked escape responses.

The synaptic weights and bias terms of a phase switching
network (PSN) (see colored box B in Fig. 7) were manually
constructed (see [12] for details) while those parameters of
the velocity regulating networks (VRNs) (see colored box C
in Fig. 7) was partly constructed and partly trained by using
the backpropagation rule (see [11], [18] for details).

Figure 7 shows the complete network structure together
with the synaptic weights of the connections between the
controller and the corresponding motor neurons as well as
the bias term of each motor neuron. These synaptic weights
and all bias terms were manually constructed and adjusted
to obtain an optimal gait; i.e., a typical tripod gait where the
diagonal legs are paired and move synchronously.

This modular neural control can generate more than 10
different walking patterns which are controlled by the four in-
put neuronsI2,...,5 (see Fig. 7). Furthermore, a self-protective
reflex4 can be activated via the input neuronI1 which will
exciteTR1 andTL1 joints and all CTr- and FTi- joints and
inhibit the remaining TC-joints. Appropriate input parameter
sets for the different walking patterns and the reflex behavior
are presented in Table I where the first column describes
the desired actions in accordance with five input parameters
shown in the other columns. Abbreviations are:FDiR and
BDiR = forward and backward diagonal motion to the right,
FDiL andBDiL = forward and backward diagonal motion
to the left,LaR and LaL = lateral motion to the right and
the left. Note that marching is an action where all the legs

4The action is triggered when the machine is turned into an upside-down
position. As a consequence, it stands still in this position as long as the
stimulus (UD signal) is presented (not shown here but see [12] for details).
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Fig. 7. The modular neural control of the six-legged walking machine
AMOS-WD06 consists of three different neuron groups: input, hidden, and
output. Input neuronsI are the neurons used to control walking direction
(I2,...,5) and to trigger the self-protective reflex (I1). Hidden neuronsH
are divided into three modules (CPG, PSN, and VRNs (see [11], [12] for
details)). Output neurons (TR, TL, CR, CL, FR, FL) directly command
the position of servo motors. Abbreviations are: BJ = a backbone joint,
TR(L) = TC-joints of right (left) legs, CR(L) = CTr-joints of right (left)
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W12, W12, andW21 are modifiable synapses governed by Eqs. 2, 3, 4. The
location of the motor neurons on the AMOS-WD06 is shown in the lower
picture. Note that describing the controller driving the machine also with
the backbone joint will go beyond the scope of this article. Thus, the motor
neuron controlling the backbone joint BJ is not activated; i.e., the backbone
joint functions as a rigid connection. However, it can be modulated by the
periodic signal via the PSN or VRNs to perform an appropriate motion, e.g.,
helping the machine during climbing over obstacles.

are positioned and held in a vertical position and support is
switched between the two tripods.

In this article, we will simulate simple auditory- and
wind-evoked escape responses; i.e., the walking machine will
perform fast forward walking behavior as soon as it detects
auditory and/or wind puff stimulus. Thus, the five input
neuronsI1,...,5 are here set toI1 = 0.0, I2 = 1.0, I3 = 1.0,
I4 = −1.0, and I5 = −1.0 allowing the machine to walk
forward only. However, the values of all these input neurons
can be controlled by sensory signals driving the machine to
autonomously perform various reactive behaviors [11], [12].

TABLE I

INPUT PARAMETERS FOR THE DIFFERENT WALKING PATTERNS

AND THE REFLEX BEHAVIOR.

Actions I1 I2 I3 I4 I5

Forward 0 1.0 1, 0 −1.0 −1.0
Backward 0 1.0 1, 0 1.0 1.0
Turn right 0 1.0 1, 0 −1.0 1.0
Turn left 0 1.0 1, 0 1.0 −1.0
Marching 0 1.0 1, 0 0.0 0.0
FDiR 0 0.0 0 −1.0 −1.0
BDiR 0 0.0 0 1.0 1.0
LaR 0 0.0 0 0.0 0.0
FDiL 0 0.0 1 −1.0 −1.0
BDiL 0 0.0 1 1.0 1.0
LaL 0 0.0 1 0.0 0.0
Reflex 1 0.0 ...1.0 1, 0 −1.0 ...1.0 −1.0 ...1.0

V. EXPERIMENTS AND RESULTS

This section describes experiments carried out to assess
the ability of the sensory system5 and the behavior controller
(see Fig. 4). The first experiment was to investigate the effect
of utilizing a whisker for wind detection. Thus the maximum
distance at which the sensory system with and without the
whisker are able to detect a wind puff was measured and
compared. During the test, a wind puff was produced at
different distances in front of the sensors embedded at the rear
part of the walking machine. Figure 8 shows the detection
rates of a wind puff; i.e., the number of detection divided by
number of experiments. Here we performed 10 experiments
at each of the different distances.

As a result, it shows that the sensor with the whisker
can detect a wind puff at a longer distance (up to≈ 17
cm or at wind speed higher than≈ 2.5 km/s.) comparing
with the one having no whisker. This concludes that the
whisker can improve the performance of the sensor for wind
puff detection. From this experimental results, we therefore
make use of this whisker sensor to mainly detect wind
for eliciting a wind-evoked escape response. Due to the
sensory construction based on a microphone, it can also
detect auditory signals. Hence, we will use high-intensity
sound at the frequency of 300 Hz where the whisker sensor
can detect at the distance up to≈ 30 cm or at the sound
pressure level higher than≈ 48 dB to activate an auditory-
evoked escape response.

The second task was to demonstrate the auditory- and
wind-evoked escape responses of the walking machine
AMOS-WD06 in the real environment. These reactions will
be activated as soon as the sensor detects the stimuli.
As a consequence, the AMOS-WD06 increases its walking

5The physical sensor (cf. Fig. 1) and its neural preprocessing (cf. Fig. 5).
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speed, as if it escapes from an attack. This action will
be preserved for longer time steps even if the activating
stimulus has already been removed. The results of the real
robot walking experiments can be seen as video clips at
http://www.nld.ds.mpg.de/∼poramate/ROBIO. Here we re-
port the real-time sensory-motor data (see Fig. 9). As shown
in Fig. 9, the AMOS-WD06 walked forward with its normal
speed (≈ 6.5 cm/s) at the beginning. During walking for-
ward, the CTr-joints and the TC-joints performed periodic
movements while the FTi-joints were inhibited to stay in
the flexed position. After around 80 time steps, the auditory
signal was generated leading to high output activation of the
sensor. The AMOS-WD06 then performed auditory escape
running by increasing its walking speed up to≈ 20 cm/s
where the periodic signals of the motor neurons as well as the
foot contact sensor signals oscillated at a higher frequency.
Then it returned to its normal walking speed at around
150 time steps meaning that it was far enough from the
stimulus. Furthermore, at around 250 time steps a wind puff
was induced making the AMOS-WD06 again increases its
walking speed reflecting the wind-evoked escape behavior
and it eventually returns to the normal walking speed at
around 310 time steps. From this experimental result, one
can see that such a reactive behavior can be generated by the
behavior controller (see Fig. 4) in the way that the RAW-
AW signal is first preprocessed via the neural preprocessing
unit (see Fig. 5). Then the preprocessed signal triggers the
escape behavior by simply increasing the step frequency of
the walking machine through the modular neural control unit.

VI. CONCLUSIONS

Inspired by the sensory system of invertebrates and their
reactive behaviors, we constructed a simple auditory-wind
detector sensor and embedded it on a physical six-legged
walking machine in order to stimulate comparable behaviors.
Using the auditory-wind detector sensor in analogy to sound
sensitive organs of crickets and wind sensitive hairs of
crickets and cockroaches the auditory and wind puff signals

can be detected. They are preprocessed by a series of single
recurrent neurons having a capability to filter unwanted
noise (low-pass filter), shape the sensory data, and prolong
the activation time of the sensory signals. Furthermore, to
generate the biologically-inspired reactive behaviors of the
walking machine, the modular neural controller is applied.
It was constructed by integrating three different functional
neural modules: the neural oscillator network, the velocity
regulating networks, and the phase switching network. The
neural oscillator network acts as a central pattern generator
(CPG) for basic rhythmic leg movements while controlling
different walking patterns is done by the velocity regulating
and the phase switching networks. This modular neural con-
trol can produce more than 12 different actions by using five
input neurons. Moreover, it can generate different walking
speeds by modifying the strength of synaptic connections
of the neural oscillator module. These synaptic weights are
changed according to the preprocessed sensory signal of the
auditory-wind detector sensor.

The experimental results illustrate that the proposed neural
technique has been shown to be adequate for generating
simple auditory- and wind-evoked escape responses; i.e., the
walking machine can autonomously perform fast forward
walking behavior as soon as it detects auditory and/or wind
puff stimulus. To a certain extent the approach pursued here
sharpens the understanding of how dynamical properties of a
recurrent neural network (i.e., hysteresis effects) can benefit
for filter design or other applications requiring high and low
output activations at different points on the input space.

More demanding tasks will be the improvement of the
neural preprocessing in the way that it will be able to distin-
guish between auditory and wind puff stimulus for driving
different behaviors. To do so, an evolutionary algorithm
[9], [15] will be applied to reconstruct and optimize this
preprocessing unit. We also aim to implement more auditory-
wind detector sensors together with an additional neural
preprocessing network for the left and right detection [11]
allowing the machine to sense the direction from which the
stimuli came and then to orient its escape path away from
the source.
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