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Abstract

This article presents two different types of walking ma-
chines: an insect-like robot and a biped robot which have
been developed during last years. Both walking machines
are attractive in the way that they now combine three key
aspects: versatility, adaptivity, and autonomy. Versatility
in this sense means a variety of reactive behaviors, while
adaptivity implies to online learning capabilities, and au-
tonomy is an ability to function without continuous human
guidance. These three key elements are achieved under neu-
ral control and an online learning mechanism. In addition,
this contribution will point out that such control technique
is shown to be a power method of solving sensor-motor co-
ordination problems of high complexity systems.

1. Introduction

Living creatures like walking animals and humans have
found fascinating solutions for the problem of legged loco-
motion in the way that their movements give the impression
of elegance and smoothness. They are able to move around
not only on flat terrains but also on rough terrains and even
to perform a variety of walking behaviors. Furthermore,
they can adapt themselves to environmental changes in or-
der to survive. Neurophysiological and ethological stud-
ies have revealed that solving such tasks basically results
from coupling appropriatebiomechanics [1] with neural
control [2]. For instance, walking animals (e.g., insects,
cats) can walk forward, backward, and in lateral directions
and perform self-stabilization to minor disturbances (stum-
bling) because of their appropriate biomechanical design.
Neural control, on the other hand, plays a role in generating
different walking behaviors as well as adaptivity. Therefore,
during the last few decades several roboticists have begun
actively to look to the biological sciences for the construc-
tions (biomechanics) and the controller (neural control) de-

sign of robotic systems in particular walking machines to
approach the living creatures in their levels of performance.

The diverse researches in the domain of biologically-
inspired walking machines have been ongoing for over 20
years [3, 4]. Most of them have focused on the mechanical
design to have animal-like properties and perform efficient
locomotion [5]. Others have concentrated on the generation
of locomotion based on engineering technologies [6] as well
as biological principles [7]. While impressive in their own
right, the versatility (behavioral repertoire) of these systems
is much smaller. Typically they are not adaptive (learning
capabilities) and most of them still fail to be autonomous
(function without continuous human guidance). From this
point of view, during last years we have developed two dif-
ferent types of walking machines (an insect-like robot [8, 9]
and a biped robot [10]) where they now combine the three
key aspects (versatility, adaptivity, and autonomy) under
neural sensor-motor control and an online learning mech-
anism. The description of the development of each walking
machine system and its performance is presented in the fol-
lowing.

2. AMOS: Insect-Like Hexapod

AMOS is an advanced mobility sensor-driven walking
device (see Fig. 1a). It consists of a two-part body, at which
six identical legs and one tail are attached. Each leg has
three joints (three degrees of freedom) controlled by analog
servo motors: the thoraco-coxal joint enables forward (+)
and backward (−) movements, the coxa-trochanteral joint
enables elevation (+) and depression (−) of the leg, and the
femur-tibia joint enables extension (+) and flexion (−) of
the tibia [9]. The morphology of these multi-jointed legs
is modeled on the basis of a cockroach leg [8]. Each tibia
contains a spring compliant element to absorb impact force
as well as to measure ground contact during walking. The
body of AMOS consists of two segments: a front segment
where two forelegs are installed and a central body seg-
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Figure 1. a, The physical insect-like hexapod AMOS (see [9] for the details of the location of the sensors on AMOS).b, The diagram of the neural
controller of AMOS. The controller acts as an artificial perception-action system; i.e., the sensor signals are passed through the neural preprocessing
unit into the modular neural control unit which directly drives the actuators. In addition, the adaptive neural control functions as high level control.
It is used for learning capability. As a result, the hexapod’s behavior is generated by the interaction with its physical environment in a sensorimotor
loop.

ment where the two middle and the two hind legs are at-
tached. They are connected by one active backbone joint
inspired by the invertebrate morphology of the American
cockroach’s trunk [8]. This backbone joint driven by a dig-
ital servo motor is for up- and downward bending, which
allows the walking machine to climb over obstacles. More-
over, a tail with two degrees of freedom, rotating around a
horizontal and a vertical axis, is implemented in the cen-
ter on the back of the trunk. On this actively moveable tail,
which can be manually controlled, a mini wireless camera is
installed for monitoring the environment while the machine
is walking. This walking machine has a multitude of sen-
sors: six foot contact sensors, six reflexive optical sensors,
eight infra-red sensors, two light dependent resistor sensors,
one upside-down detector sensor, one gyro sensor, one incli-
nometer sensor, and one auditory-wind detector sensor. The
hexapod receives 26 sensory inputs, and controls 19 motors
to achieve a broad behavioral repertoire including foothold
searching, elevator reflex (swinging a leg over obstacles),
self-protective reflex (standing in an upside-down position),
obstacle avoidance, auditory- and wind-evoked escape re-
sponses, phototaxis (turn towards a light source), climbing
over obstacles, and five different gaits.

These complex autonomous behaviors are generated
through a so-called sensor-driven neural controller consist-
ing of a neural preprocessing unit and a modular neural con-
trol unit (Fig. 1b). The neural preprocessing unit filters sen-
sory noise, combines, and shapes sensory data to drive cor-
responding behaviors. On the other hand, the modular neu-
ral control unit is used for locomotive generation. It con-
sists of three subordinate networks or modules: a neural os-

cillator network, two velocity regulating networks (VRNs),
and a phase switching network (PSN). A simple neural os-
cillator network serves as a central pattern generator [11]
(CPG) producing the basic rhythmic leg movements and
regulates walking speed. Other modules, like the veloc-
ity regulating and the phase switching networks, enhance
the walking capability of the machine to walk in omnidi-
rection. Furthermore, adaptive neural control using a cor-
relation based differential Hebbian learning rule (see Sec-
tion 4 and [12] for details) has been implemented. It allows
the hexapod to learn to respond to a conditioned stimulus,
e.g., predator-recognition learning. As a result, all reactive
and adaptive behaviors of the hexapod are accomplished by
interacting with a physical environment through a sensori-
motor loop (see [8, 9] for more details). The results of the
real robot walking experiments can be seen as video clips at
http://www.nld.ds.mpg.de/∼poramate/AMOSWD06.html.

3. RunBot: Planar Dynamic Biped

RunBot is a planar dynamic biped robot (see Fig. 2a). It
consists of four actuated joints: left hip, right hip, left knee
and right knee. Each joint is driven by a modified servo mo-
tor where the built-in pulse width modulation (PWM) con-
trol circuit is disconnected, while its built-in potentiometer
is used to measure the joint angles. RunBot has no actuated
ankle joints, resulting in very light feet and efficiency for
fast walking. Its feet were designed having a small circular
form (4.5 cm long). Each foot is equipped with a switch
sensor to detect ground contact events. A mechanical stop-
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Figure 2. a, The planar dynamic biped robot RunBot (see [10] for the details of the location of the sensors on RunBot).b, The diagram of the
neural controller of RunBot where the adaptive network is implemented on top as high level control to modulate the reflexive networks (lower level)
through learner neurons (not shown but see [10] for details). Accordingly, the adaptive dynamic walking behavior of RunBot is achieved by the
interaction with its physical environment in a sensorimotor loop.

per is implemented on each knee joint to prevent it from
going into hyperextension. Approximately seventy percent
of the robot’s weight is concentrated on its trunk and the
parts of the trunk are assembled in a way that its center of
mass is located forward of the hip axis. In addition, it has
an upper body component, which can be actively moved to
shift the center of mass backward or forward for walking
on different terrains, e.g., level floor versus up or down a
ramp. It leans backward during walking on a level floor
(see Fig. 2a) and this position is also suitable for walking
down a ramp while it will lean forward (reflex action) when
RunBot falls backward or after it successfully learned to
walk up a ramp. The corresponding reflex is controlled by
an accelerometer sensor (AS). The AS is installed on top of
the right hip joint. Additionally, one infrared (IR) sensor
is implemented at the front part of RunBot pointing down-
wards to detect a ramp. These IR and AS sensory signals are
used for adaptive control (see [10] for details). As described
here, the biomechanical design of RunBot has the follow-
ing special features that distinguish it from other powered
biped robots and that facilitate high-speed walking and ex-
ploitation of natural dynamics [10]: (a) small, curved feet
allowing for rolling action; (b) unactuated, hence light, an-
kles; (c) lightweight structure; (d) light and fast motors; (e)
proper mass distribution of the limbs; and (f) properly posi-
tioned mass center of the trunk. Utilizing all these proper-
ties, RunBot can perform self-stabilization of gaits [10] and
it also exhibits passive walking characteristics [10] reflected

by the fact that during one quarter of its step cycle all motor
voltages remain zero.

RunBot’s locomotion is driven by adaptive reflex neural
control (see Fig. 2b) which doesn’t employ any trajectory
control. It consists of two main circuits: adaptive and re-
flexive neural control circuits including signal preprocess-
ing. The reflexive neural control based on reflex mecha-
nisms uses proprioceptor signals (sensory feedback) com-
ing from ground contact sensors, stretch receptors, and joint
angle sensors to generate dynamic stable gaits while its AS
sensor is used to trigger the body reflex. In the adaptive
neural control where the correlation based differential Heb-
bian learning rule (see Section 4 and [12] for details) is ap-
plied, it serves for gait and posture adaptation during walk-
ing up a ramp. As a consequence, through the tight cou-
pling of biomechanics with neural control, RunBot can au-
tonomously walk with a high speed (> 3.0 leg length/s),
self-adapting to minor disturbances, and reacting in a ro-
bust way to abruptly induced gait changes [10]. At the
same time, it can learn walking on different terrains, requir-
ing only few learning experiences [10]. The results of the
real robot walking experiments can be seen as video clips at
http://www.nld.ds.mpg.de/∼poramate/Runbot.html.

4. Learning Algorithm

It is known that neurons can change their synaptic
strength according to the order of the arriving inputs. That



is, if a predictive inputu1 (conditioned stimulus (CS), see
Fig. 3) is followed by a reflex inputu0 (unconditioned stim-
ulus (US), see Fig. 3), the plastic synapse of the predictive
input gets strengthenedρ1 but it will get weakened if the
order is reversed. Hence, this form of plasticity depends on
the timing of correlated neural signals (STDP, spike timing-
dependent plasticity). This rule will lead to weight stabi-
lization as soon asu0 = 0 [12], meaning that the reflex
has successfully been avoided. As a result, we obtain be-
havioral and synaptic stability at the same time without any
additional weight-control mechanisms. In this learning rule
(see Fig. 3), only the plastic synapseρ1 is allowed to change
while the synapse of the reflex inputρ0 is set to a positive
value, e.g., 1.0.
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Figure 3. Correlation based differential Hebbian learning
mechanism. In the terminology of conditioning, CS = conditioned
stimulus, US = unconditioned stimulus.

Formally, we have

v = ρ0u0 + ρ1u1 (1)

as the neuron output driven by inputs (u0, u1). The plas-
tic synapseρ1 gets changed by differential Hebbian learning
using the cross-correlation between both inputsu0 andu1.
It is given by:

dρ1

dt
= µu1

du0

dt
. (2)

µ is the learning rate which will define how fast a system
can learn.

5. Conclusions

Taken together, this article gives two main contributions.
On the one hand, it shows that neural control and learning
can be successful for complex sensori-motor control prob-
lems in systems with a large numbers of sensors and motors.
On the other hand, it guides that the biologically-inspired
walking machines are fascinating technology to study with

respect to their biomechanical design including sensor and
actuator systems as well as the realizations of control con-
cepts. For example, they can serve as scientific tools for
better understanding and solving the sensorimotor coordi-
nation problems of many degrees of freedom, for perform-
ing experiments with neural controllers, and for the devel-
opment of versatile artificial perception-action systems. In
particular, the biped walking robot can serve as an experi-
mental device in order to understand human walking which
is a formidable challenge and which has been addressed
through physiological studies as well as robotics research.
Moreover, this walking machine technology is shown to be
a highly interdisciplinary technology, uniting contributions
from several areas as diverse as biology, biomechanics, ma-
terial science, neuroscience, engineering, and computer sci-
ence.
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