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Abstract. Wild rodents learn the danger-predicting meaning of preda-
tor bird calls through the paring of cues which are an aversive stimulus
(immediate danger signal or unconditioned stimulus, US) and the acous-
tic stimulus (predator signal or conditioned stimulus, CS). This learning
is a form of pavlovian conditioning. In analogy, in this article a setup is
described where adaptive sensor-driven neural control is used to simulate
biologically-inspired acoustic predator-recognition learning for a safe es-
cape on a six-legged walking machine. As a result, the controller allows
the walking machine to learn the association of a predictive acoustic sig-
nal (predator signal, CS) and a reflex infrared signal (immediate danger
signal, US). Such that after learning the machine performs fast walking
behavior when “hearing” an approaching predator from behind leading
to safely escape from the attack.

Key words: Learned predator recognition, Associative learning, Legged
robots, Sound, Reflexes, Prediction, Central pattern generators

1 Introduction

Animals can effectively avoid dangerous situations including an attack of their
predators. Evidence from physiological and ethological studies shows that some
prey animals require experience to adaptively respond to predation (learned
predator recognition) instead of an innate recognition. For example, wild rodents
learn the danger-predicting meaning of predator bird calls through a temporal
association of cues which are an aversive stimulus (unconditioned stimulus, US)
and the acoustic stimulus (conditioned stimulus, CS) [1]. This mode of learning
is a form of classical conditioning which has been discovered by Ivan Pavlov
[2]. Generally, it involves presentations of a neutral stimulus (CS) along with a
stimulus of some significance (US). Once these two stimuli become associated,
animals begin to perform a behavioral response to the CS instead of the US.
Inspired by these findings, we simulate here such predator recognition learning
for a safe escape on a walking machine. This learned behavior together with the
escape response is controlled by adaptive sensor-driven neural control using a
correlation based differential Hebbian learning rule. The work presented here ex-
tends our previous works [3], [4] by integrating this learning mechanism into the



original modular neural control [3], [4] leading to the adaptive behavior. How-
ever, the main purpose of this article is not only to demonstrate the biologically-
inspired learning on the walking machine (adaptive behavior) but also to show
that the adaptive sensor-driven neural control can be a powerful technique to
solve sensorimotor coordination problems of many degrees-of-freedom systems
and to effectively provide an online learning capability to the systems.

The following section describes the technical specification of the walking ma-
chine platform. Section 3 explains the adaptive sensor-driven neural control for
the acoustic predator-recognition learning and escape response. Experiments and
results are discussed in Section 4. Conclusion and an outlook on future research
are given in the last section.

2 The Walking Machine Platform AMOS

The six-legged walking machine AMOS [4], [5] is a biologically-inspired hard-
ware platform for studying the coordination of many degrees of freedom, for
performing experiments with neural controllers and learning and for the de-
velopment of artificial perception-action systems employing embodied control
techniques. It consists of a two-part body connected by one active backbone-
joint (BJ), at which six identical legs and one active tail are attached. Each
leg has three joints that are controlled by servomotors: the thoraco-coxal (TC-)
joint enables forward (+) and backward (−) movements, the coxa-trochanteral
(CTr-) joint enables elevation (+) and depression (−) of the leg, and the femur-
tibia (FTi-) joint enables extension (+) and flexion (−) of the tibia (see [5]
for the leg configuration of AMOS). Each tibia segment has a spring damped
compliant element to absorb impact force during walking. All in all, this ma-
chine has 20 sensors: six foot contact (FC1,...,6) sensors, seven infrared (IR1,...,7)
sensors, two light dependent resistor (LDR1,2) sensors, one gyro (GR) sensor,
one inclinometer (IM) sensor, one upside-down detector (UD) sensor, one cur-
rent sensor (I) and one auditory-wind detector (AW) sensor (see [5] and also
http://www.nld.ds.mpg.de/∼poramate/ICONIP09/AMOSLearning.mpg for the
location of all sensors on AMOS). Here the rear IR7 and AW sensors installed
at the tail are used for learning experiments of acoustic predator recognition
which is the main contribution of this article while the use of other sensors in
sensor-driven behavioral applications can be found in [4], [5]. The control of this
walking machine is programmed into a personal digital assistant (PDA) with the
update frequency of ≈ 14 Hz (see [4], [5] for more details of AMOS).

3 Adaptive Sensor-Driven Neural Control

The adaptive sensor-driven neural control (Fig. 1) generally generates reactive
and adaptive behaviors. The controller based on a modular structure is formed
by three main components: a neural preprocessing unit, a modular neural con-
trol unit, and a neural learning unit. The neural preprocessing unit filters sen-
sory noise and shapes sensory data to drive corresponding reactive and adap-



tive behaviors. The modular neural control unit, on the other hand, is used for
locomotion generation of the walking machine. It coordinates leg movements,
regulates walking speed, and creates omnidirectional walking. Additionally the
neural learning unit allows the walking machine to perform adaptive behavior;
i.e., it can learn to respond to a conditioned stimulus, e.g., an acoustic signal
which is the main focus of this study. All neurons of the adaptive control are
modelled as standard additive non-spiking neurons. Their activity develops ac-
cording to ai(t + 1) =

∑n
j=1 Wijσ(aj(t)) + Θi; i = 1, . . . , n , where n denotes

the number of units, Θi represents a fixed internal bias term together with a
stationary input to neuron i, and Wij the synaptic strength of the connection
from neuron j to neuron i. The output of the neurons in the neural preprocessing
and modular neural control units is given by the standard sigmoid transfer func-
tion σ(ai) = (1 + e−ai)−1 and the hyperbolic tangent (tanh) transfer function
σ(ai) = tanh(ai), respectively, while in the neural learning unit is governed by
a linear transfer function. Input units are linearly mapped onto the interval [0,
1] for all neurons in the neural preprocessing and learning units and [−1, 1] for
those in the modular neural control unit.

3.1 Neural Preprocessing of Sensory Signals

In order to simulate the acoustic predator-recognition learning for escaping a
close predator attack from behind (conditioned response) on the walking ma-
chine, we use the AW sensor [5] for detecting distant acoustic signals (predator
signal) and the rear IR7 sensor for perceiving too near, hence potentially dan-
gerous, approaching objects from behind. Here we use portable speakers [5] im-
plying a predator and the 300 Hz acoustic signal referring to a predator signal.
The speakers are manually moved for creating the predatory attack situation
(see http://www.nld.ds.mpg.de/∼poramate/ICONIP09/AMOSLearning.mpg).

The raw acoustic and infrared signals coming from the AW and IR7 sensors,
respectively, require preprocessors for eliminating the sensory noise as well as
shaping the sensory data. To do so, we utilize the dynamical properties, i.e.,
hysteresis effects, of a recurrent neuron to construct the preprocessing network
of the acoustic signal and the same one is also applied to the infrared signal.
Each network consists of a series of single recurrent neurons H1, 2. Their output
is combined at a threshold output neuron O providing a binary output [0, 1]
to the neural learning circuit. The complete neural preprocessing unit is shown
in Fig. 1(a) (see [5] for more details). It has a capability to eliminate unwanted
noise, shape the sensory data, and also prolong the activation time of the sensory
signals. The prolongation of the signals are required in order to obtain the ap-
propriate sensory correlation for a learning mechanism and to allow the walking
machine to effectively escape from the predator attack. That is, the action shall
persevere for longer than the stimulus itself to ensure a safe escape.
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Fig. 1. (a) The neural preprocessing unit consisting of two identical networks with
appropriate weights (see [5] for more details of neural parameter design and neurody-
namics, i.e., hysteresis effects). These networks are applied to preprocess the acoustic
and infrared signals. Their output is fed to the neural learning unit. H1, 2AW and
H1, 2IR7 = hidden neurons of the AW and IR7 sensor networks with the standard
sigmoid transfer function, OAW and OIR7 = output neuron of the AW and IR7 sensor
networks with the threshold transfer function, CS = conditioned stimulus, US = un-
conditioned stimulus. (b) The neural learning circuit where its output activates a fast
walking behavior through modular neural control. ρ0 = synapse of the US input set
to 1.0., ρ1 = plastic synapse of the CS input, u0,1 = inputs to a learner neuron, v =
output of the learner neuron. (c) The modular neural control consisting of input (IN),
hidden (HN), and output (ON) neuron groups. Input neurons I are the neurons used to
control walking direction (I2,...,5) and to trigger the self-protective reflex (I1). Hidden
neurons H are divided into three modules (CPG, PSN, and VRNs (see [4] for details)).
Output neurons (TR, TL, CR, CL, FR, FL) directly command the position of servo
motors. The location of the motor neurons on the walking machine AMOS is shown in
[5]. BJ = backbone joint, TR(L) = TC-joints of right (left) legs, CR(L) = CTr-joints
of right (left) legs, FR(L) = FTi-joints of right (left) legs. All connection strengths
together with bias terms are indicated by numbers except those of the VRNs given by
A = 1.7246, B = −2.48285, C = −1.7246. W11, W22, W12, and W21 are modifiable
synapses (see Sect. 3.3)

3.2 A Neural Learning Circuit

The preprocessed acoustic and infrared signals described in the previous section
are fed into the neural learning circuit to modify a plastic synapse during learn-
ing. The learning goal in this study is to enable the walking machine to learn to
recognize its acoustic predator signal (300 Hz sound) and then perform a fast
walking behavior as soon as it detects the signal. As a consequence, it can avoid
the close attack of the predator. To achieve this we apply a correlation based
differential Hebbian learning rule [6]. It correlates two kinds of input signals: one
is a predictive signal or an early input (conditioned stimulus (CS), see Fig. 1(b))
and the other is a reflex signal or a later input (unconditioned stimulus (US),



see Fig. 1(b)). The acoustic signal from the AW sensor is used as the predictive
signal while the infrared signal from the IR7 sensor serves as the reflex one. Both
sensory signals are provided to the learning mechanism as shown in Fig. 1(b).
At the beginning, the connection between the predictive acoustic signal and a
learner neuron converges with zero strengths (ρ1, dashed line in Fig. 1(b)). In
this situation, the fast walking behavior will be controlled only by the reflex
infrared signal. That is, the machine generally walks with normal walking speed.
Detecting the acoustic signal and afterwards the objects (portable speakers)
from behind here implies the attack of the predator. This situation leads to the
correlation between the predictive and reflex signals, such that the modifiable
synapse ρ1, which connects the predictive signal with the learner neuron, will
grow. Consequently, after 2-3 attacks (depending signal correlation) during the
learning phase, the fast walking behavior will finally be driven by the predictive
signal instead. The used learning algorithm has the property that learning will
stop when the reflex signal is zero [6]; i.e., when the portable speakers (sound
source) does not get too near to the walking machine. As the weight is stored,
after learning the next time the acoustic signal is detected the fast walking
behavior will immediately be activated such that triggering an earlier escape
reaction. Eventually the machine will return to its normal walking speed when
the acoustic stimulus disappears implying that it is far enough from the sound
source or the predator.

Learning Algorithm: The correlation based differential Hebbian learning
rule (ICO-learning [6]) for the weight change of ρ1 is given by dρ1/dt = µu1du0/dt,
where µ is the learning rate which will define how fast a system can learn, e.g.,
0.35. One could consider µ as the susceptibility for a synaptic change, which in
a biological agent will be defined by its evolutionary development, which deter-
mines the agent’s ability to learn a certain task. How and if these values could
also be influenced (possibly by mechanisms of meta-plasticity), changing learn-
ing susceptibility, goes beyond the scope of this article. In this learning rule, only
the plastic synapse ρ1 is allowed to change while the synapse of the reflex input
ρ0 is set to a positive value, e.g., 1.0. Note that here the weight change takes
place only at a positive derivative otherwise it remains unchanged. Formally we
have v = ρ0u0 + ρ1u1 as the learner neuron output driven by inputs u0,1. Here
we set u0 and u1 to the infrared signal of the IR7 sensor (US) and the 300 Hz
acoustic signal of the AW sensor (CS), respectively.

3.3 Modular Neural Control

Actions or walking behaviors of the machine are generated through modular
neural control. This modular controller consists of three subordinate networks
(colored boxes I, II, III in Fig. 1(c)): a neural oscillator network (I), a phase
switching network (PSN, II), and two velocity regulating networks (VRNs, III).
Here, we discuss only main functions of the networks (see [4] for a complete
description). The neural oscillator network, serving as a central pattern generator
(CPG) [7], generates periodic output signals. These signals are provided to all
CTr-joints and FTi-joints only indirectly passing through all hidden neurons



of the PSN. TC-joints are regulated via the VRNs. Thus, the basic rhythmic
leg movement is generated by the neural oscillator network and the steering
capability of the walking machine is realized by the PSN and the VRNs.

The neural oscillator network consists of two neurons H1,2 with full connec-
tivity. Its synaptic weights and bias terms are selected in accordance with the
dynamics of the 2-neuron system [8] staying near the Neimark-Sacker bifurca-
tion where the quasi-periodic attractors occur. The example of periodic output
signals having different frequencies resulting from different weights can be seen
at [4]. The network has the capability to generate various sinusoidal outputs
depending on the weights. Here we use the output signal v of the neural learn-
ing circuit (Fig. 1) to modify all weights of the network determined by w11,22 =
0.75v+1.125, w12 = 1.5v−0.35, and w21 = −1.5v+0.35. As a consequence, walk-
ing frequency of the machine will be increased by the activation of v, resulting
in a fast walking speed during escaping from the predator attack.

The PSN is a generic feed-forward network, which reverses the phase of the
periodic signals driving the CTr- and FTi-joints (Fig. 1(c), see also [4]). These
periodic signals can be switched to lead or lag behind each other by π/2 in phase
in accordance with the given input I3 (Fig. 1(c)). The PSN has been implemented
to allow for sideways walking, e.g., for obstacle avoidance (see [4] for more details
on parameters and experiments on sensor-driven sideways walking).

The two VRNs are also simple feed-forward networks (see [4]). Each VRN
controls the three ipsilateral TC-joints on one side (Fig. 1(c), see also [4]). Be-
cause the VRNs behave qualitatively like a multiplication function [4], they have
capability to increase or decrease the amplitude of the periodic signals by the
magnitude of the inputs I4,5. Consequently, the walking speed of the machine
will be regulated, i.e., the higher the amplitude of the signal the faster it walks.
Therefore, we also apply the neural learning output v to I4,5 (see Fig. 1(c) and
equations below). Such that the amplitude of the TC-joint signals will be ampli-
fied for the fast walking behavior while escaping. Moreover these VRNs can be
used to achieve more walking directions, like forward and backward movement
(sign inversion of the multiplication) or turning left or right where the directions
are driven by other preprocessed infrared and light dependent resistor sensor
signals through also I4,5 (not shown in the current set of experiments but see
[4]).

Figure 1(c) shows the complete network structure together with the synaptic
weights of the connections between the controller and the corresponding motor
neurons as well as the bias term of each motor neuron. These synaptic weights
and all bias terms were manually constructed and adjusted to obtain an optimal
gait; i.e., a typical tripod gait [4]. Taken together, this modular neural control
can generate more than 10 different walking patterns including various reactive
behaviors controlled via the input neurons I1,...,5 (Fig. 1(c)). Here, we only focus
on the acoustic predator-recognition learning for the safe escape; i.e., the walking
machine will perform fast forward walking behavior as soon as it recognizes sound
(after learning) or detects the close objects (before/during learning) from behind.
Thus, the input neurons I1,...,3 are here set to I1 = 0.0, I2 = 1.0, I3 = 1.0, I4



= −1.0 + v, I5 = −1.0 + v allowing the machine to walk forward only in order
to clearly observe the difference between the slow walking speed under normal
condition and the fast one during escaping the attack.

4 Experiments and Results

In this section, we illustrate the acoustic predator-recognition learning exper-
iments. As shown in Fig. 2, usually before learning AMOS walks fast (≈ 17
cm/s) only if it detects the close objects (here, portable speakers manually
moved) from behind through the rear IR7 sensor. During learning, detecting
the 300 Hz acoustic signal via the AW sensor and afterwards the objects from
behind hints here danger from the predator attack. This situation leads to the
correlation between the acoustic signal (predictive signal or “conditioned stim-
ulus” (CS)) and the infrared signal (reflex signal or “unconditioned stimulus”
(US)), such that the weight of the plastic synapse ρ1 (Fig. 1(b)) increases. While
the weight grows influencing the output v of the learner neuron, AMOS starts
to walk fast driven by the CS instead of the US. After learning, it immedi-
ately performs fast walking when “hearing” the approaching predator (learned
acoustic predator recognition) this way triggering an earlier escape reaction re-
sulting in the safe predator avoidance. The learning process stops when the
US is no longer triggered which happens when the fast walking behavior is
driven by the CS. The video clip of the learning experiments can be seen at
http://www.nld.ds.mpg.de/∼poramate/ICONIP09/AMOSLearning.mpg.

5 Conclusion

In this study, we simulate acoustic predator-recognition learning on a six-legged
walking machine such that the machine can learn the correlation between the
predictive acoustic signal (“conditioned stimulus”) and the reflex infrared signal
(“unconditioned stimulus”). As a consequence, after learning, it performs an
earlier escape reaction resulting in the safe predator avoidance as soon as it
hears the approaching predator. These learned acoustic predator recognition and
escape behavior are achieved under adaptive sensor-driven neural control (Fig. 1)
which is modular structure-based design. It consists of three main modules: 1)
neural preprocessing unit utilizing recurrent neurodynamics for preprocessing
sensory signals, 2) neural learning unit using a correlation based differential
Hebbian learning rule for associative learning capabilities, and 3) modular neural
control employing a central pattern generator for basic locomotion generation.
More demanding tasks will be related to implement neural memory to enhance
learning capability through long-term memorization of walking relevant events.
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