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Abstract:  
 
Biological neural networks in particular in brains consist of extensive recurrent structures implying 
the existence of neural dynamics, like chaotic [1], oscillatory [2], and hysteresis behavior [3]. This 
suggests that complex dynamics plays an important role for different brain functions, e.g., for 
processing sensory signals and for controlling actuators [4]. From this point of view, in this article, 
we exploit hysteresis effects of a single recurrent neuron [5] in order to systematically design 
minimal and analyzable filters. Due to hysteresis effects and transient dynamics of the neuron, at 
specific parameter configurations, the single recurrent neuron can behave as many adjustable 
low-pass filters (see Supplementary Fig. 1). Extending the neural module by two recurrent 
neurons we even obtain high- and band-pass filters (see Supplementary Fig. 1). The networks 
presented here are hardware oriented, so we have successfully implemented, e.g., a low-pass 
filter network, on a mobile processor of our hexapod robot. As a consequence, it filters motor 
noise and enables the robot to autonomously react on a specific auditory signal in a real 
environment. Such that the robot changes its gait from slow to fast one as soon as it detects the 
auditory signal at a carrier frequency of 400 Hz (see Supplementary video at 
http://www.nld.ds.mpg.de/~poramate/BCCN2009/AuditoryDrivenWalkingBehavior.mpg).  This 
auditory-driven walking behavioral experiment shows that the simple recurrent neural filters are 
appropriate for applications like background noise elimination, or non-speech sound recognition 
in robots. To a certain extent the approach pursued here sharpens the understanding of how the 
dynamical properties of a recurrent neural network can benefit for filter design and may guide to a 
new way of modeling sensory preprocessing for robot communication as well as robot behavior 
control. 
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Supplementary Figure 1: (a) Recurrent neuro-module realizing a simple low-pass filter. Its input weightwi1 and bias
term b1 are fixed to1.0 and−0.1, respectively, while the weightws1 is changeable according to the diagramD1 in
order to obtain certain cutoff frequencies. For example, selectingws1 = 2.42 the network suppresses signals with
frequencies higher than 500 Hz (d). (b) Recurrent neural network realizing simple high- and band-pass filters. For the
high-pass filter, all weights and bias terms are fixed (wi1,2 = 1.0, ws2 = 2.34, ws3 = 2.45, wc1 = −1.0, wc2 = 1.0,
b1,2 = −0.1, andb3 = −1.0), while the weightws1 is changeable according to the diagramD1 in order to obtain
certain cutoff frequencies. For example, choosingws1 = 2.39 the network functions as a 700 Hz high-pass filter (e). To
achieve the band-pass filter, all parameters are set as the high-pass filter whilews1 andws3 are adjustable to define a
lower cutoff frequencyfL and an upper cutoff frequencyfU , respectively. For example, choosingws1 = fL = 2.455
andws3 = fU = 2.535 from the (ws1,3, cutoff frequencies)-spaces (shown in the diagramsD1, D2) the network lets
signals pass which have frequencies between around 300 Hz and 600 Hz (f). (c) Simulated sine wave input signal
with an update frequency of 44.1 kHz on a 1-GHz personal computer (PC). It varies from 100 Hz to 1000 Hz and
is used as an input signal for testing the recurrent neural filter networks ((a), (b)). (d)−(f) Output signal of the low-,
high-, and band-pass filter networks, respectively. Note that the diagramD1 presents the correlation betweenws1 and
the cutoff frequency of the low- and high-pass filter networks. It also serves to control the lower cutoff frequency
fL of the band-pass filter network. The diagramD2 shows the correlation between weightws3 and the upper cutoff
frequencyfU of the band-pass filter network. All neurons are modelled as discrete-time non-spiking neurons with the
hyperbolic tangent transfer function.




