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Abstract To behave properly in an unknown environment,
animals or robots must distinguish external from self-generated
stimuli on their sensors. The biologically inspired concepts
of efference copy and internal model have been successfully
applied to a number of robot control problems. Here we
present an application of this for our dynamic walking robot
RunBot. We use efference copies of the motor commands
with a simple forward internal model to predict the expected
self-generated acceleration during walking. The difference
to the actually measured acceleration is then used to stabilize
the walking on terrains with changing slopes through its up-
per body component controller. As a consequence, the con-
troller drives the upper body component (UBC) to lean for-
wards/backwards as soon as an error occurs resulting in dy-
namical stable walking. We have evaluated the performance
of the system on four different track configurations. Further-
more we believe that the experimental studies pursued here
will sharpen our understanding of how the efference copies
influence dynamic locomotion control to the benefit of mod-
ern neural control strategies in robots.
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1 Introduction

In the early 1950s, it was proposed that in the central ner-
vous system (CNS) motor commands are copied to predict
the expected sensation (v. Holst and Mittelstaedt 1950). A
motor signal going from the CNS to the periphery is called
an efference and a signal from the peripheral sensors to the
CNS is called an afference. An efference copy, which is an
internal reference signal, can be used to distinguish reaffer-
ence (sensory signals resulting from an animal’s own ac-
tions) from exafference (sensory signals arising from exter-
nal stimuli).

Later, Held (1961) indicated that efference copies and
the reafference cannot be directly compared due to the dif-
ferent dimensionality between motor commands and sen-
sory feedback. Therefore, he proposed a neural mechanism
that transforms an efference copy signal into an expected
sensory input to compare to the actually incoming sensory
signal. This neural transformation mechanism is known as
a forward internal model (Kawato 1999). The second large
class of internal models is called inverse internal models. An
inverse internal model takes a desired trajectory and trans-
forms it into an appropriate motor command for generating
the movement.

Based on these biological findings, we apply the prin-
ciples of efference copy and forward internal model to our
biped walking robot RunBot (Manoonpong et al. 2007) to
cleanse the signal from an accelerometer sensor off the self-
generated noise from the walking movement (reafference).
The remaining exafference signal is then used to stabilize
the walking on terrains with different slopes. This way Run-
Bot is able to adapt to terrain changes ‘blindly’, i.e. without
the use of the infrared sensor, which was necessary for slope
detection previously (Manoonpong et al. 2007).



2

Fig. 1 a, b: The planar dynamic robot RunBot with its active upper
body component (UBC) and the accelerometer sensor (AS). The UBC
is drawn strongly in the zero position (ΘUBC ≡ 54.5◦) and faintly in the
minimum and maximum positions.

This work has been published in preliminary form on a
Poster Presentation at Bernstein Symposium 2008, Munich,
Germany, (Schröder-Schetelig et al. 2008).

2 Materials and methods

2.1 Mechanical Setup of RunBot

Following we give a short description of RunBot’s mechan-
ical setup. For details see (Manoonpong et al. 2007). Run-
Bot is a planar biped walking robot, 23 cm tall from foot to
hip joint axis (see Fig. 1). It is held sagittally by a boom of
1 m length, so that it cannot fall sideways, while the freely-
rotating joint of the boom influences the walking dynamics
in no way other than that RunBot is constrained on a circular
path.

Its legs have four actuated joints: left hip, right hip, left
knee and right knee. Each joint is driven by a modified RC
(radio controlled) servo motor where the built-in pulse width
modulation (PWM) control circuit is disconnected while its
built-in potentiometer is used to measure the joint angles.
A mechanical stopper is implemented on each knee joint
to prevent it from going into hyperextension, similar to the
function of human kneecaps. Approximately seventy per-
cent of the robot’s weight is concentrated on its trunk and
the parts of the trunk are assembled in a way that its center
of mass is located forward of the hip axis. RunBot’s design
also relies on the principles of passive walkers (Collins et al.
2005).

RunBot has no actuated ankle joints resulting in very
light feet being efficient for fast walking. Each foot is equipped
with a switch sensor to detect ground contact events. The

Fig. 2 Schematic diagram of leg and body control. Numbers in paren-
theses indicate the number of information channels going through the
arrows.

mechanical design of RunBot has some special features, e.g.
small curved feet and a properly positioned center of mass
that allow the robot to perform passive walking during some
stage of its step cycles. Hip and knee joints are driven by
output signals of the leg controller (running on a Linux PC)
through a DA/AD converter board (USB-DUX).

To extend its walking capabilities for walking on differ-
ent terrains, e.g. level floor versus up or down a ramp, one
servo motor with a fixed mass, called the upper body com-
ponent (UBC), is implemented on top. The UBC has a total
weight of 98 g (including servo). The position of the UBC is
controlled by the body controller. It leans back in its “zero
position” (see Fig. 1b) for walking on a level floor, while it
is necessary to lean forward when RunBot walks up a ramp.
The body controller relies on an accelerometer sensor (AS)
serving as a vestibular organ. The AS is installed on top of
the right hip joint and measures the acceleration in the di-
rection of walking. In our set-up, the AS signal is fed to the
USB-DUX for digitalization providing it to the body con-
troller afterwards.

2.2 Control structure

Fig. 2 schematically shows the structure of RunBot’s leg and
body control. For the generation of the walking movements
the leg controller gets input from the feet’s ground contact
sensors and the legs’ hip and knee joint angle sensors. Its
motor neurons drive the leg motors (through push-pull post-
processing) and via the environment a closed loop is formed
back to the sensors. There are eight motor neurons for just
four leg servos. This is because the original neural design of
RunBot is biologically inspired and resembles the principle
of antagonistic muscle pairs (flexor / extensor). Muscles can
only exert a pulling force, and therefore one muscle (the ag-
onist) creates a specific movement while the other muscle
(antagonist) is passively stretched back to its original posi-
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tion. The push-pull postprocessing recombines the signals
from two motor neurons to generate a single voltage signal
for the servo.

The body controller drives the UBC motor and indirectly
influences the walking process trough the environment. It
is necessary to lean the UBC forward in order to walk up
a slope. For slope detection the body controller only relies
on the accelerometer sensor and has no input from a long
range sensor like an infrared eye. The AS signal is domi-
nated by the acceleration arising from RunBot’s ego-motion
(see Fig. 6d) and cannot directly be used for slope detection.
To distinguish reafferent signals (arising from ego-motion)
from exafferent signals (arising from external influences like
slope changes) the body controller additionally receives in-
put from the forward internal model (IM).

The role of the IM is to predict the expected accelera-
tion (of the next time step) that is caused by RunBot’s own
motor commands (of the present time step). To do so the
IM receives an efference copy of the motor commands and
additionally has access to the hip and knee joint angles that
define the momentary posture.

The idea behind all this is not that the robot has a good
internal model for walking on slopes with arbitrary incli-
nation and therefore can detect external disturbances on the
slopes. It is rather the aim that the robot has a good model for
walking on level floor (normal situation) and can detect and
compensate disturbances – which are the slopes. In other
words, the robot knows how the movement of the walking
“feels” on level floor and on a slope it tries to get the same
“sensation”, which is governed by the walking speed. If it
is getting too slow, then it leans forward, if it is getting too
fast, it leans backward. This applies equally to walking on
level floor as on a slope.

The leg controller, the forward internal model and the
body controller are described in detail in the following sec-
tions.

2.2.1 Leg controller

The leg controller is a reflexive neural network with a hier-
archical design. It is unchanged, inherited from the original
work of RunBot (Manoonpong et al. 2007) and not subject
to this study. The reflexive locomotion generation works as
follows: When one foot touches the ground the hip extensor
and knee flexor of the other leg (swing leg) are triggered, as
well as the hip flexor and knee extensor of the stance leg.
When the hip stretch receptor of the swing leg is activated,
the extensor of the knee joint in this leg is triggered. Finally
the foot of the swing leg touches the ground and the swing
leg and the stance leg swap their roles thereafter. The net-
work is designed with flexor and extensor neurons for each
hip and knee motor.

Fig. 3 Forward internal model. Three-layer feed-forward neural net-
work with linear activation functions for input and output neurons
and sigmoid activation functions in the hidden layer. The connection
weights are trained by a backpropagation algorithm (see Sec. 3.1).

Further details of the leg controller are not necessary for
this study, but can be found in (Manoonpong et al. 2007).
For the reader it is sufficient to know, that there exists a leg
controller and that we have access to the generated motor
commands, upon which we can build the internal model.

During walking on different terrains RunBot’s walking
patterns remain unchanged (i.e. the weights of the leg con-
troller’s neural network are constant) while adaptation is done
only through active UBC control.

2.2.2 Forward internal model

We designed the forward internal model (Fig. 3) as a very
simple three-layer (including input layer) feed-forward neu-
ral network. It has 12 input neurons, three hidden neurons
and one output neuron. Input and hidden layer have one ad-
ditional bias neuron each. The output of every single artifi-
cial neuron is defined by

y(x) = g

(
n

∑
i=0

ωixi

)
. (1)

The neuron has n input ‘dendrites’ (x0 . . .xn) and one output
‘axon’ y(x). The weights (ω0 . . .ωn) determine, how much
the inputs are transmitted, and the activation function g does
a transformation of the output. The bias neurons are special,
they receive no input and emit a constant output of 1.0. The
inputs of the IM are given by efference copies of the eight
leg motor neurons (range [0, 1]) and the actual posture of the
legs via the joint angle sensors (range [-1, 1]). The activation
function of the input and output neurons is linear, while the
hidden layer neurons have a symmetrical sigmoid activation
function g(x) = tanh(x).

The internal model not only relies on efference copies
from the leg motor neurons, because the outputs of all leg
motor neurons are rectangular shaped (compare Fig. 6a).
Using only these as inputs of the IM the output would also
have had a very stair-like appearance and would not match
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Fig. 4 Comparision of the learning curves for training the forward
internal model with three different kinds of inputs: solely efference
copies of the motor neurons, solely joint angle sensors and both to-
gether. The latter gives the best results.

the AS signal very well. Figure 4 shows typical learning
curves for training the forward internal model based on dif-
ferent inputs. Using just efference copies of the motor neu-
rons results in a network with an high mean squared error of
about 0.0047. By using solely the joint angle sensors as in-
puts the training of the IM takes longer, but it finally comes
to a much smaller error of 0.0017. Taking both motor neu-
rons and angle sensors as inputs leads to a very quick learn-
ing of the network and after 1500 epochs the error even
drops further to 0.0011. As a result, this shows that pro-
viding the sensory feedback and efference copies as inputs
to the network gives the best performance of sensory pre-
diction; i.e., smallest error. Thus, one should use methods
that are able to deal with multiple inputs and here we feel
that networks supercede conventional hand-designed con-
trol methods as networks can learn the balance of the differ-
ent inputs. Therefore, we conclude that in the special case
shown here a PID controller could probably still do the job,
but that the here existing multi-input situations already would
require careful design of such controller, where network learn-
ing will find the optimal solution without efforts. For our
approach here just three hidden neurons were sufficient.

The IM was trained with data obtained during RunBot
walking on a level floor, where the UBC was positioned in
its “zero position” ΘUBC ≡ 54.5◦ (compare Fig. 1). The out-
put of the IM serves as a reference signal for the body con-
troller.

2.2.3 Body controller

The body controller (Fig. 5) drives the motor of the UBC. It
consists of just one motor neuron which gets input from the
accelerometer sensor and from the internal model. To ob-
tain the exafference acceleration signal, it simply computes

Fig. 5 Body controller. aAS is the actual acceleration signal from the
sensor and aIM is the predicted acceleration signal from the internal
model. The neuron computes the difference of both signals, weighted
with the UBC control weight w, and integrates them over time via the
recurrent connection. The activation function is linear, but hard limited
to the range [0, 4].

the difference of the two signals weighted with the factor w,
which is set to a fixed value during experiment. These pre-
diction error values are proportional to the (de-)acceleration
caused by the slope of the track and the UBC posture, i.e.
they are mostly positive, when RunBot is deaccelerated by
the slope, and mostly negative, when RunBot is getting too
fast compared to the reference signal of the internal model.
The prediction error values are then integrated over time by
means of the neuron’s recurrent connection having synaptic
strength of 1.0. This causes the UBC to move forward (back-
ward), as long as the prediction error is positive (negative).
When the prediction error vanishes, the UBC has reached
a new equilibrium position. As a consequence such mech-
anism enables RunBot to stably continue walking on an al-
tered terrain.

The activation function of the neuron is piecewise lin-
ear, so that the output of the neuron is clamped to the range
[0, 4], which linearly corresponds to a setting of the UBC
position in the range 19.0◦ to 157.4◦ given by its physical
limits (compare Fig.1). The output Nt

UBC of the UBC motor
neuron at time-step t is calculated according to:

Nt
UBC =


4 for Ñt

UBC >= 4
Ñt

UBC for 0 < Ñt
UBC < 4

0 for Ñt
UBC <= 0

where Ñt
UBC = w · (at

AS−at
IM)+Nt−1

UBC. (2)

aAS and aIM are the output signals of AS and IM respectively
and w is the UBC control weight.

The output aAS of the accelerometer sensor neuron is
modeled according to:

aAS =
(

1+ eαAS(θAS−CASVAS)
)−1

(3)

where VAS is the output voltage signal from the accelerom-
eter sensor. θAS and αAS are the threshold and a positive
constant which are set to 4.0 and 2.0, respectively. CAS is a
positive amplification of the input signal set to 6.0.



5

 0
 0.5

 1

N
LH

Ea

−1

 0

 1

a L
H

a

b

−1

 0

 1

a L
K

a

b

c

−0.2
 0

 0.2

0.0 0.5 1.0 1.5 2.0

a A
S

time [s]

a

b

c

d

Fig. 6 Typical recordings for walking on a level floor with the UBC
in its zero position. a: left hip extensor motor neuron (NLHE). b: left
hip angle sensor neuron (aLH). c: left knee angle sensor neuron (aLK).
d: accelerometer sensor neuron (aAS).

3 Experiments and Results

3.1 Training of the forward internal model

The network of the forward internal model was implemented
using the Fast Artificial Neural Network Library (FANN),
version 1.2.1 (Nissen 2003). For training we recorded data
from ten runs of Runbot walking on a level floor. The UBC
was positioned in its zero position ΘUBC ≡ 54.5◦ (corre-
sponding to NUBC ≡ 1.0), where it stayed all the time during
recording.

Fig. 6 shows typical outputs of some sensor and motor
neurons during walking on a level floor. The training was
done off-line, after all irrelevant data (manual return of Run-
Bot to the start position and the transient phase) had been re-
moved from the recorded files. The remaining training data
then was shuffled randomly to avoid local minima during
training and to get an over-all good prediction. First the net
was initialized with random weights in the range [0.01, 0.05]
and then trained to predict the accelerometer data of the
next time step using a standard backpropagation algorithm,
where the weights are updated after each training pattern.
It was trained for approximately 2000 epochs up to a mean
squared error of 0.00127 (one epoch = every data point used
once for training). Because this error value is just a mean,
we repeated the training several times with new randomly
initialized weights, until the network showed a good over-
all prediction, e.g. the prediction had a symmetrical shape
for left and right steps. Note that the UBC position is not
included into the learning because it is fixed at 54 degrees
and would only lead to a bias term. If we had used sev-
eral training sets on level floor with different UBC positions
for training, then the difference between the predicted and
actual acceleration signal would always be almost zero on
level floor, regardless of the UBC position. This means that
the UBC would be driven by small random fluctuations to

Fig. 7 Track layout. The slope of the track parts II, III and IV can be
adjusted via the angles αII, αIII and αIV. Parts III and IV are divided in
six sections A to F (each 35.5 cm long), while G stands for the end of
the track.

Table 1 Different configurations of the tracks. αII, αIII and αIV are the
angles of track parts II, III and IV.

Track αII [◦] αIII [◦] αIV [◦]
#1 0.6 1.9 3.7
#2 0.8 2.6 4.7
#3 0.9 2.6 4.7
#4 0.9 2.6 2.6
#5 0.9 1.3 1.3

any possible position, instead of the desired behavior. As a
consequence, on the slope the situation is expected to be-
come even worse.

The connection weights of the resulting network are given
in Table 2 in the appendix.

3.2 Walking experiments

Walking experiments were performed on a circular track,
which consists of four parts (I, ..., IV), whose lengths are
214 cm, 80 cm, 80 cm and 134 cm (see Fig. 7). The first part
(I) is a level floor (αI = 0◦). The parts II to IV have angles
αII, αIII and αIV which are given in Table 1 for different
track configurations.

3.2.1 Experiment 1: Body control performance

This experiment was performed on tracks #1 and #2 in or-
der to see how efficient the trained body controller is with
respect to the weight w. We set up the parts of the tracks
to have gradually increasing angles up to 3.7◦ for track #1
and 4.7◦ for track #2. The angles have to increase gradu-
ally, because this type of body control only is reactive, and
large and sudden changes in the slope of the track would
cause RunBot to fall. To see how good control performs, we
divided the last two parts of the track into six sections of
length 35.5 cm each, labeled A to F (Fig. 7). For each value
of the weight w we performed 20 runs and looked in which
section RunBot falls. The results are shown in the stacked
histograms in Fig. 8. A section value of G means that Run-
Bot did not fall and instead successfully reached the end of
the track. RunBot was placed manually at the beginning of
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Fig. 8 Stacked histograms of the results of Experiment 1 on Track #1 and Track #2. The labels A to F stand for the section in which RunBot falls
backwards (compare Fig. 7). G means that RunBot reached the end of the track.

the track with the UBC approximately in its zero position.
So part I of the track had the purpose to let RunBot enter its
regular walking process and to allow relaxation of the UBC
to an equilibrium position near the zero position.

First we discuss the results for track #1 shown in the
left histogram in Fig. 8. The first stack shows the results for
w= 0, i.e. no body control, where the UBC stayed in its zero
position. Here we can see that without body control RunBot
always falls backwards at a certain point of the slope, which
is in 90% of the cases section D, and in 10% section E. This
is because the slope decreases the velocity of RunBot until it
falls. For w = 0.025 we see that in 20% of the cases RunBot
successfully reaches the end of the track (section G) and that
the amount for section D has decreased to 20%. We also
see that in some cases RunBot only got to section A and B.
This is because the activation of the body control (w 6= 0)
also introduces a certain degree of variability, and in some
cases the UBC position might be below the zero position
when RunBot is reaching the slope, causing it to fall earlier.
Best results were obtained for w = 0.05 with 90% success.
Larger values of w led to lower success rates (60%-65%)
with higher instability.

The results for track #2 are shown in the right histogram
in Fig. 8. Here the angles are larger than on track #1, so we
expect that we have to use larger values for w to get similar
results. For w = 0 we see again that RunBot is falling, this
time a little bit earlier at section B (80%). With w = 0.025
RunBot gets up to section D but still falls in all trials. Results
are getting better for w = 0.05 and are ‘best’ for w = 0.075
with 45% success. For w = 0.1 and w = 0.15 performance
drops again. w = 0.2 shows an even slightly better success
rate than w = 0.075, but this is not caused by a good perfor-
mance of the control system, but rather because of the self-
stabilizing properties of RunBot (Manoonpong et al. 2007).
In fact the control system behaved badly with the strong
weight (w = 0.2) and we observed that sometimes, regard-

less of the actual slope, and even already on the level floor,
the UBC went directly to the front and stayed there, because
it cannot go further. It seems that the forward internal model
was driven into a range that it was not trained for. So al-
though the IM prediction actually was not good in this situ-
ation, RunBot was able to easily reach the end of the track,
because the front most UBC position is optimal for walk-
ing upslope and is still acceptable for walking on level floor
with a faster speed because of the self-stabilizing properties.
This position, however, is not appropriate for walking down
slopes (not shown here but see (Manoonpong et al. 2006) for
experiments) where it will definitely lead to falling forward
since the center of mass moves too far out from the support-
ing foot area. Here we consider the front most UBC position
as inappropriate, because we want RunBot to walk with an
upright UBC position on level floor and lean the UBC only if
necessary as in natural human walking. For smaller weights
this behavior was not observed. Note that one can observe
that the quality of the walking behavior against the weight
is a kind of inverted bell curve in both walking tracks ac-
cording to the success rate in section A (not falling). This is
because RunBot is not a trajectory-controlled robot and its
dynamical stability is also derived from the moving speed of
the UBC according to the strength of the UBC weight.

3.2.2 Adaptive walking example

Fig. 9 presents the results of a walk on track #1 with control
weight w = 0.05 taken from Experiment 1. RunBot leaned
its UBC forward and successfully reached the end of the
track without falling. Fig. 9a shows the outputs of the ac-
celerometer sensor neuron and the internal model, while Fig.
9b magnifies the difference of these actual and predicted AS
signals (prediction error). A positive/negative error drives
the output of the UBC motor neuron up/down (compare Fig.
9c). The first 4.6 seconds Runbot was walking on a level
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floor and one can see how the difference of the actual and
the predicted acceleration signal (prediction error) drives the
UBC position to an equilibrium position slightly below the
zero position, where it was during training (dashed line in
Fig. 9c). Because the AS signal now nearly resembles the
reference signal of the IM, the prediction error is becom-
ing small and the UBC oscillates around the equilibrium
position. As RunBot reaches the slope the prediction error
is getting positive most of time and consequently the UBC
position increases. But because the slope of the track still
is getting steeper, this goes on till the end of the track is
reached. If the slope had continued with a fixed angle, the
UBC position would have converged to a certain value, as
can be seen from the following Experiment 2.

The supplementary video (Online Resource 1) shows some
walks of RunBot on track #3. First it is shown that with de-
activated body controller (w = 0) RunBot falls backwards
at a certain point of the track, when the slope is getting too
steep. Then the controller is activated (w = 0.1) and RunBot
is able to reach the top end of the track. Also note that here
the initial positions of the UBC are just roughly set to the
zero position.

3.2.3 Experiment 2: UBC equilibrium position for different
slopes

With this experiment we wanted to check if the UBC po-
sition converges to a specific value for a track with a cer-
tain slope. For this we used track configurations #4 and #5,
where the last two parts III and IV had equal slopes αIII =

αIV. Again we recorded several runs of RunBot like in Ex-
periment 1. For track #4 (αIII = αIV = 2.6◦) we recorded
n = 18 successful runs with weight w = 0.1, for track #5
(αIII = αIV = 1.3◦) we got n = 19 runs with w = 0.05. The
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sitions for tracks with different slopes. The shaded areas around the
mean curves give the standard deviations.

positions of the UBC differ from run to run and are quite
sensitive to the initial values, but on average a clear tendency
is observable. In Fig. 10 the mean UBC position 〈NUBC〉 =
1
n ∑

n
i=1 Ni

UBC is shown for both tracks.1 The shaded areas
give the standard deviations of the curves:

σ =
√

1
n−1 ∑

n
i=1(N

i
UBC−〈NUBC〉)2

In track part I the UBC position rises from the initial po-
sition and relaxes to the equilibrium position for flat terrain
as before. On track #4 the UBC position is overshooting the
zero position on the first steps because of the stronger weight
w, which leads to more pronounced oscillations around the
equilibrium position. In part II it begins to rise together with
the track slope. This continues in part III, and in part IV the
UBC finally stabilizes and oscillates around the new equilib-
rium positions, which are approximately 122◦ for track #4
and 63◦ for track #5. As expected the equilibrium position
takes larger values for steeper slopes. For track #4 the UBC
position for a few times reached its upper limit, where the
output of the body controller neuron was clamped to NUBC =

4.0. Nevertheless this is a real new equilibrium position and
not just an artifact of the clamping.

4 Discussion and Outlook

We have demonstrated the use of biologically inspired prin-
ciples of signal processing in a walking robot. Based on ef-
ference copies of motor commands it was possible to predict
the afferent signals of an accelerometer sensor using a sim-
ple forward internal model. This acceleration signal predic-
tion was subtracted from the actual acceleration signal to ob-
tain an exafference, which was successfully used to stabilize
the walking on terrains with changing slopes. The depen-
dence of the body control performance on the UBC weight

1 The index i in Ni
UBC here denotes the index of the run and not the

time-step as in Eq. (2).
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w was studied. Finally we verified, that the UBC position
settles to new equilibrium positions for different slopes. Fur-
thermore, we have showed that the length of the slope will
not disturb the stability of the system (compare Fig. 9 and
Fig. 10). It is important to note that our concern here is also
to show that the learned network (forward internal model)
is general such that it enables RunBot to adaptively walk on
different terrains without changing the network parameters
and structure. However, only the UBC weight is required to
change according to a terrain condition leading to simplifi-
cation when an online learning mechanism is later applied
(Porr and Wörgötter 2003).

Although some of us have previously investigated the
use of efference copies and neural control for adaptive walk-
ing of RunBot (Manoonpong and Wörgötter 2009), the re-
sults here are different as follows: 1) The two experiments
conducted in the previous work were embedded in the con-
text of the adaptive neural control and learning mechanism
described in (Manoonpong et al. 2007), whereas in our cur-
rent work the infrared eye (IR), the UBC reflex behaviour
and the adaptive neural control and learning mechanism are
omitted. Instead we implement a new type of UBC con-
troller that solely relies on the principles of efference copy
and internal forward model. 2) The first experiment described
in (Manoonpong and Wörgötter 2009) used effenence copies
and internal forward models to eliminate external and self-
generated periodic noise from the IR and AS sensors to en-
hance learning performance. This is in contrast to our cur-
rent work, where we do not aim to eliminate the external
error, but instead use it to drive the UBC controller. 3) In the
second experiment of the previous work a slope detecting
circuit was constructed based on efference copies to replace
and simulate the IR signal, as required by the learing mech-
anism. No online comparison of the actual and predicted IR
signal was performed. 4) The internal forward model here is
developed based on a simple feed-forward network, which
is trained offline with a standard back-propagation of error
algorithm, while in the previous work it was manually con-
structed based on dynamical properties of recurrent neural
networks.

To a certain extent our experimental study pursued here
sharpens our understanding of how the efference copy can
be exploited for the dynamic locomotion control in particu-
lar walking on different terrains. It also emphasizes how bio-
logical findings (efference copy and internal models) can be
beneficially used in robotic systems. Up to date, efference
copy and internal model concepts have been applied to a
number of robot control problems in different ways. For ex-
ample Russo et al. (2005) simulated a robot with phonotaxis
(auditory orientation towards sound sources) and optomotor
reflex (visual capability allowing to maintain a straight tra-
jectory against disturbances). The motor commands driven
by the phonotaxis reflex (efference copies) are transferred

to the expected reafferent visual signal via a forward model.
This way it is possible to smoothly integrate the visual and
auditory stimuli, filtering out the optical disturbances caused
by the phonotaxis reflex, while still reacting to external stim-
uli. Namiki et al. (2003) presented a hierarchical parallel
control architecture for high-speed visual servoing (arm mo-
tion control system with visual perception). The architecture
is based on an interaction model between efferent and affer-
ent signals in a motor control network used for a parame-
ter adaptation mechanism. As a consequence, it allows the
robot to perform high-speed tracking, grasping, handling,
and collision avoidance tasks. In the domain of legged loco-
motion control, Lewis and Bekey (2002) presented a model
for a quadruped robot, that – like a newborn foal – can learn
to walk several minutes after inception. They used an ef-
ference copy from a central pattern generator (CPG) that
was transformed into the sensory expectation via innate in-
ternal models. This information is compared to the actual
sensory feedback and an adaptive rule tunes the CPG to co-
ordinate the limbs. Dürr et al. (2003) proposed a neural con-
trol mechanism for three-joint legs of a hexapod robot for
leg searching movement. They also present a generalized
form of the mechanism, where the internal model and the
efference copy are applied for central pattern control. Lewis
and Simó (2001) used motor data phase, motor signals (ef-
ference copies), and other sensory signals including visual
information to enable the bipedal robot to be aware of unex-
pected features in the environment as well as to the sensory
consequences (sensory prediction) of its own movement. As
a consequence the robot can learn to expect a smooth surface
in front of it when trained on a smooth surface, and without
being explicitly told about smooth surfaces. Note that the
robot, however, due to its hip joints fixed attachment to a
boom, is indeed not a dynamic biped. Compared to such ap-
proaches our study to a certain extent shows how efference
copy and forward models can be applied in dynamic loco-
motion control, which, to the best of our knowledge, has not
been investigated so far.

In general most bipedal robots use the target ZMP (Zero
Moment Point) (Vukobratovic et al. 1990) control algorithm
for locomotion in particular on different and uneven terrains,
which requires precise modeling and actuation with high
control gains (Kim et al. 2005; Huang et al. 2008). How-
ever, there are also other interesting approaches for bipedal
walking on different terrains. For example, Iida et al. (2006)
proposed a dual adaptation loop model for locomotion con-
trol on up/down slopes of a simulated biped walking robot.
The first adaptation loop is based on the phase entrainment
ability of pattern generators. The other is for the feedforward
elicitation of sensorimotor constraints; that is kinematic pa-
rameters constrain limbs trajectories (e.g. length of stride)
according to the environmental state). Miyakoshi (2006) pro-
posed memory based control where a robot can walk on a
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known slope and a rolling slope. Ogino et al. (2008) devel-
oped a walking controller that enables a robot to walk on
rough terrain by changing the compliance of the joints with-
out sensing the state of the surface of the ground. Iida and
Tedrake (2009) presented a minimalistic control architecture
with a minimum sensory feedback of a compass gait model
for dynamic bipedal walking on the different inclinations of
slope.

In contrast to all these locomotion control mechanisms,
our controller here is purely based on neural control and its
does not employ any trajectory control for locomotion gen-
eration. Instead only a pure sensor-driven mechanism is em-
ployed. To obtain adaptive walking on different terrains we
use efference copies and a neural forward internal model for
sensory sequence prediction. Although the developed for-
ward model is quite simple, it is general as described above.
Nevertheless there could be several ways for improvement:
i) The IM is designed as a feed-forward network with access
only to the actual sensory data, but it might perform better
if it had access also to the history or if it were designed as a
recurrent network. ii) The training of the IM was done off-
line. It would be useful if it could be trained during walk-
ing. iii) The body controller does only control the posture
of the UBC. If also the weights of the leg controller neu-
rons responsible for step length had been adapted, it should
be possible for RunBot to walk up much steeper slopes as
shown in (Manoonpong et al. 2007). iv) The UBC weight
w now has to be adjusted by hand and different terrain con-
ditions require a slightly different UBC weight for effective
walking. However, based on this experimental study one can
use this setup with some preset weight values and employ
an online learning method (Porr and Wörgötter 2003), such
that the robot can learn to select the appropriate weight by it-
self governed by the momentarily existing terrain condition.
This would require an additional sensor for determining ter-
rain condition, e.g. a slope angle detection sensor and goes
beyond the scope of the current study.
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A Appendix

Table 2 Connection weight matrix of the internal model. The column
index gives the originating neuron and the row index the target neuron.
The symbol — means, that there is no connection between the neurons
(compare Fig. 3).

N 1 2 3 4 5 6
14 -0.454 -4.000 0.136 0.463 -0.139 0.102
15 -1.732 4.235 -0.995 -0.110 0.402 0.134
16 0.253 -2.581 -0.830 -0.211 -5.286 -0.136

N 7 8 9 10 11 12
14 0.204 0.401 0.058 -0.685 1.050 -2.177
15 -0.017 -0.640 -2.831 0.528 1.143 3.361
16 -4.282 1.618 2.454 -2.766 1.598 -0.250

N 13 14 15 16 17
14 1.276 — — — —
15 -3.887 — — — —
16 1.619 — — — —
18 — 0.390 0.363 0.347 0.245
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