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Abstract. In this article we exploit the discrete-time dynamics of a sin-
gle neuron with self-connection to systematically design simple signal fil-
ters. Due to hysteresis effects and transient dynamics, this single neuron
behaves as an adjustable low-pass filter for specific parameter configura-
tions. Extending this neuro-module by two more recurrent neurons leads
to versatile high- and band-pass filters. The approach presented here
helps to understand how the dynamical properties of recurrent neural
networks can be used for filter design. Furthermore, it gives guidance
to a new way of implementing sensory preprocessing for acoustic signal
recognition in autonomous robots.
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1 Introduction

To date, recurrent neural networks (RNNs) have been employed to a wide field
of applications due to their excellent properties, like robustness, adaptivity, and
dynamics. Examples include the use of RNNs in chaotic systems [1], [2], robot
control and learning [3], trajectory generation [4], and others. Many applications
require effective learning methods [5], [6] to train the networks. As a consequence,
the networks, in particular for signal processing [7], [8], [9], end up with a massive
connectivity or cascaded recurrent structures. The complexity of such networks
requires a large memory during learning. In addition, their high dimensionality
makes it difficult to analyze them and even to understand the neural dynamics
in detail. However, a thorough understanding of the network dynamics is one
important part to further develop and apply these networks to other applications,
like robot control. This is also a basic step towards the development of complex
systems [10]. As a small step forward in this direction, we want to show here
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how neural dynamics, e.g., hysteresis effects, can be applied to systematically
design simple nonlinear low-pass, high-pass, and even band-pass filters. With
one or only a few neurons such filters can be used for sensory signal processing
in autonomous robots, where preprocessed signals will drive (complex) robot
behavior, e.g., for (non-speech) sound recognition.

The following section shortly describes the discrete-time dynamics of a single
recurrent neuron. Section 3 explains how we develop low-pass filters by utilizing
hysteresis effects of the single recurrent neuron. Sections 4 and 5 show the ex-
tension of the low-pass filters to high- and band-pass ones. Section 6 presents an
application of using the proposed neural filers for acoustic signal recognition in
a walking robot. The last section provides summary and discussion.

2 Discrete Dynamics of a Single Recurrent Neuron

A single neuron with self-connection (see Fig. 1(a)) has several interesting (dis-
crete) dynamical features[11]. For example, an excitatory self-connection leads
to a hysteresis effect, while stable oscillation with period-2 orbit can be observed
for an inhibitory self-connection. Both phenomena occur for specific parameter
domains, where the input and the strength of the self-connection are considered
as parameters. In this article, hysteresis effects are utilized for designing sim-
ple filters. The corresponding discrete-time dynamics is parameterized by the
input I and the self-connection ws (see Fig. 1(a)), and for a recurrent neuro-
module is given by a(t+ 1) = wsf(a(t)) + θ with the sigmoidal transfer function
f(a) = tanh(a). The parameter θ stands for the sum of the fixed bias term b
and the variable input I to the neuron. O(t) = f(a(t)) is the output signal. We
refer the reader to [12] for the presentation of the dynamics of a neuron with
excitatory self-connection in the (θ, ws)-parameter space.

3 Low-Pass Filters

In this section we describe how simple low pass filters can be designed based on
the hysteresis effect of the single recurrent neuron mentioned above. We simulate
a sine wave input signal varying from 100 Hz to 1000 Hz (compare Fig. 1(b)).
It is used as an input signal for the recurrent neuro-module configured as a
hysteresis element L (see Fig. 1(a)). The network is constructed and analyzed
using the Integrated Structure Evolution Environment (ISEE) [5] which is a
software platform for developing and evolving recurrent neural networks. To
observe the low-pass filter characteristics of the network, we fixed the presynaptic
weight (wi1 = 1.0) from the input to the neuron and the bias term (b1 = −0.1)
while the self-connection ws1 of the output unit is varied (see Fig. 1(c)). Using
this setup, the network performs as a low-pass filter at different cutoff frequencies
according to the strength of ws1. Figure 1(c) presents the correlation between
ws1 and the cutoff frequency. For example, selecting ws1 = 2.42 the network
suppresses signals with frequencies higher than 500 Hz. This effect together with
the characteristic curve of this network is shown in Fig. 2.
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Fig. 1. Low-pass filter setup. (a) Recurrent neuro-module realizing a simple
low-pass filter. Its input weight wi1 and bias term b1 are fixed to 1.0 and −0.1,
respectively, while the weight ws1 is changeable in order to obtain certain cutoff
frequencies. (b) Example of the input signal at increasing frequencies (from 100
Hz to 1 kHz, 44.1 kHz sampling rate). (c) Cutoff frequency of a low-pass filter
module depending on the self-connection ws1. The x -axis represents the self-
connection ws1 and the y-axis represents the ratio between frequency [Hz] and
sampling rate (44.1 kHz). Note that this diagram will be used later for defining
lower cutoff frequencies fL of the band-pass filters described below.
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Fig. 2. Example of a low-pass filter. (a) A 500 Hz low-pass filter neuro-module.
(b) Characteristic curve of the network with its cutoff frequency at 500 Hz. (c)
Output signal of the network according to the given input shown in Fig. 1(b).
(d) The hysteresis effect between input and output signals at certain frequencies.
Due to the hysteresis effect, the shape of the output signal is distorted, e.g., 100
Hz and 500 Hz. Arrows show how the output develops according to the change
of the input.
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To visualize the hysteresis effect of the 500 Hz low-pass filter, output versus
input signals are plotted in Fig. 2(d). This shows that the hysteresis effect dis-
appears for the high-frequency signals (e.g., 1000 Hz), whereas for low-frequency
signals (e.g., 100 Hz and 500 Hz) the hysteresis switches the amplitude between
(almost) saturation values (approximately −1 and +1). As the bias term defines
the base activity of the neuron, the amplitude of the high-frequency output os-
cillates with a small magnitude between around −0.6 and −0.998. Eventually it
will never rise above 0.0 again. Due to the slowness of the transient dynamics
and the bias term the upper saturation domain (high stable fixed points (≈ +1))
is never reached if high frequency signals are applied. Furthermore, because of
the hysteresis effects, the low-pass filter output is slightly shifted and its shape
is distorted. Therefore, the system acts as a nonlinear low-pass filter.

4 High-Pass Filters

Having established a single neuron low-pass filter, the following step is to derive
networks, which behave like high-pass filters based on the presented low-pass.
The simplest way to do this would be to subtract the low-pass filter output
(see, e.g., Fig. 2(c)) from the input (see Fig. 1(b)). In other words, the low-pass
filter neuron L (see Figs. 1(a) and 3(a)) would here act as an inhibiting neuron
which inhibits transmission of all low-frequency signals of the input. However,
due to the hysteresis effect, the low-pass filter output is shifted and its shape
is distorted compared to the input (see Fig. 2(d)). Thus the input cannot be
directly subtracted. To overcome this problem, we again utilize the hysteresis
effect to shape the input to match it to the low-pass filter output. For doing this,
we simply add one more hysteresis unit H (see Fig. 3(a)) receiving its input via
a fixed presynaptic weight (wi2 = 1.0). Its neural parameters (self-connection
ws2 and bias term b2, see Fig. 3(a)) are experimentally adjusted and we set them
to ws2 = 2.34 and b2 = −0.1 for which a suitable hysteresis loop is achieved (see
Fig. 3(b)). According to this specific weight and bias term, this hidden neuron
H actually performs as a low-pass filter with a cutoff frequency of around 1000
Hz. Thus it shapes the input and allows all signals having frequencies up to
around 1000 Hz to pass through. After preprocessing at H, the shaped input
signal is transmitted to the output neuron O through a positive connection
weight (wc2 = 1.0, see Fig. 3(a)). It is then subtracted by the low-pass filter
output due to a negative connection weight (wc1 = − 1.0, see Fig. 3(a)). Still
the resulting signal consists of a few spikes in the low frequency components.
Therefore, we add a self-connection ws3 together with a bias term b3 at O to
obtain an appropriate third hysteresis loop (see Fig. 3(c)) that eliminates these
spikes. The neural parameters of this output unit are experimentally tuned and
they are set to ws3 = 2.45 and b3 = −1.0. The resulting network structure is show
in Fig. 3. Using this network, we then obtain high-pass filters at certain cutoff
frequencies by tuning only the weight ws1 shown in Fig. 1(c). For example,
choosing ws1 = 2.39 the network functions as a 700 Hz high-pass filter. This
high-pass effect and the characteristic curve of the network are shown in Fig. 4.
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Fig. 3. High-pass filter setup. (a) Recurrent neural network realizing a simple
high-pass filter. All weights and bias terms are fixed (wi1,2 = 1.0, ws2 = 2.34,
ws3 = 2.45, wc1 = −1.0, wc2 = 1.0, b1,2 = −0.1, and b3 = −1.0), while the
weight ws1 is changeable according to Fig. 1(c) in order to obtain certain cutoff
frequencies. (b), (c) Hysteresis effect between the input and output of the hidden
neuron H and the output neuron O, respectively. The input of H varies between
−1.0 and +1.0 while the sum of the inputs of O varies between −2.0 and +2.0.
Due to the hysteresis effect the output of H and O has its low (≈ −1.0) and
high (≈ +1.0) activations at different points. The output of H will show high
activation when the input increases to values above 0.88. On the other hand, it
will show low activation when the input decreases below −0.68. For the output
of O, it will show high activation when the input increases to values above 1.86
while it will show low activation when the input decreases below 0.135. Arrows
show how the output develops according to the change of the input.

5 Band-Pass Filters

In this section, we describe how band-pass filters can be achieved by simply
changing the self-connections of the high-pass filter network (see Fig. 3(a)) while
its structure remains unchanged. Interestingly, due to the fact that the output
neuron of the network (see Fig. 3(a)) behaves as a hysteresis element, we only
need to increase its self-connection ws3 (i.e., increasing its hysteresis size [12])
up to a certain point. As a consequence of the transient dynamics [12], the high
frequency signals will then be suppressed.

To observe this phenomenon, we first let the network behave as a 100 Hz
high-pass filter; i.e., it passes only signals with frequencies above 100 Hz. The
neural parameters are given as follows: wi1,2 = 1.0, ws1 = 2.479, ws2 = 2.34,
ws3 = 2.45, wc1 = −1.0, wc2 = 1.0, b1,2 = −0.1, and b3 = −1.0. Now gradually
increasing ws3 from approximately 2.47 to 2.57 the high frequency boundary of
the network decreases. Thus, in order to design our band-pass filters, this weight
will be used to set the upper cutoff frequency fU . It defines the upper limit at
which the frequencies pass through. Beyond this limit, signals will be cancelled
out. The correlation between weight ws3 and the upper cutoff frequency fU
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Fig. 4. Example of a high-pass filter. (a) The 700 Hz high-pass filter network.
(b) Output of the low-pass filter neuron L according to the given input shown in
Fig. 1(b). It suppresses the signal at frequencies above ≈ 700 Hz. (c) Character-
istic curve of the network with its cutoff frequency at approximately 700 Hz. (d)
Output signal of the network according to the given input shown in Fig. 1(b).
Only the high frequency signals remain at high amplitude while the amplitude
of the lower ones is reduced. (e) Relation between input and output signals at
certain frequencies. Due to the hysteresis effect and the subtraction process, the
shape of the output signal is distorted, e.g., 800 Hz. Arrows show how the output
develops according to the change of the input.

is shown in Fig. 5(a). As shown in the previous sections, the self-connection
ws1 is generally applied to set the frequency at which the signal will be passed
(for high-pass filters) or filtered (for low-pass filters). Here we make use of this
weight (ws1, see Fig. 1(c)) to set the lower cutoff frequency fL which allows
only signals having frequencies above this point to pass. For example, selecting
ws1 = fL = 2.47 and ws3 = fU = 2.51 from the (ws1,3, cutoff frequencies)-spaces
shown in Figs. 1(c) and 5(a), the network (see Fig. 5(b)) lets signals pass which
have frequencies between 200 Hz and 850 Hz (see Fig. 5(c)). Decreasing ws1 to
2.455 but increasing ws3 to 2.532 the signal bandwidth is reduced to the range
from around 300 Hz to around 600 Hz (see Fig. 5(d)). Furthermore, it is even
possible set the weights to narrow the frequency range to around 500 Hz by
choosing, e.g., ws1 = 2.43 and ws3 = 2.542 (see Fig. 5(e)). Thus, the network
behaves as a versatile band pass filter.

6 Robot Behavior Control

To show the capability of the neural filters presented here for real world appli-
cations, we have applied, e.g., a 400 Hz low-pass filter network (see Fig. 1(a)),
to generate acoustic-driven walking behavior (see Fig. 6) of our hexapod robot
[2], [12]. The network receives the input–a multi frequency signal mixing be-
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Fig. 5. Example of a band-pass filter. (a) Upper cutoff frequency fU of a band-
pass filter network depending on the weight ws3. (b) The band-pass filter net-
work. The self-connection ws1 of neuron L defines the lower cutoff frequencies
(cf. Fig. 1(c)) while ws3 of the output neuron O is for controlling the upper
cutoff frequencies (a). (c) Response of the network for ws1 = 2.47, ws3 = 2.51.
Upper panel: Characteristic curve of the network with bandwidth from 200 Hz
to 850 Hz. Lower panel: Output signal of the network according to the input
given in Fig. 1(b). (d) Response of the network for ws1 = 2.455, ws3 = 2.532.
Upper panel: Characteristic curve of the network with bandwidth from around
300 Hz to around 600 Hz. Lower panel: Output signal of the network using the
same input as above. (e) Response of the network for ws1 = 2.43, ws3 = 2.542.
Upper panel: Characteristic curve of the network with its bandpass of around
500 Hz. Lower panel: Output signal of the network. Note that Amp means the
amplitude of neuron activation.

tween a target low frequency signal (e.g., 300 Hz) and unwanted noise from
motors as well as locomotion (see Figs. 6(a)–(c))–from an acoustic sensor sys-
tem of the robot. It suppresses the unwanted noise including acoustic signals
having frequencies above 400 Hz (see Figs. 6(d) and (e)) while the low frequency
signals pass through (see Fig. 6(f)). As a consequence, it enables the robot to
autonomously react on a specific acoustic signal in a real environment; i.e., the
robot changes its gait from a slow wave gait (default gait, see Figs 6(g) and (h))
to a fast one (acoustic-driven gait, see Fig. 6(i)) as soon as it detects the signal
at the carrier frequency of 300 Hz. The video clip of the experiments can be seen
at http://www.manoonpong.com/ICANN2010/AcousticDrivenBehavior.mpg.
These acoustic-driven walking behavioral experiments show that the simple re-
current neural filters are appropriate for robot applications like background noise
elimination, and/or non-speech sound recognition.
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Fig. 6. Input and output signals of the 400 Hz low-pass filter network and cor-
responding walking patterns in three example situations (only walking (left),
walking and receiving 800 Hz sound (middle), and walking and receiving 300 Hz
sound (right)). (a)–(c) The input signal to the network for the different condi-
tions. (d)–(f) The output of the network according to the given input for the
different conditions. (g)–(i) Examples of the corresponding walking patterns in
a certain period for the different conditions. The x -axis represents time and the
y-axis represents the legs. During the swing phase (white blocks) the feet have
no ground contact. During the stance phase (black blocks) the feet touch the
ground. R1: Right front leg, R2: Right middle leg, R3: Right hind leg, L1: Left
front leg, L2: Left middle leg, L3: Left hind leg. Note that we use an additional
low-pass filter neuron to eliminate the remaining noise ((d), (e)) and smooth the
desired acoustic signal (f) before activating the desired walking pattern (here,
caterpillar-like gait (i) through modular neural locomotion control [2].

7 Discussion and Conclusions

In this study, we have addressed the exploitation of hysteresis effects and tran-
sient dynamics of a single neuron with an excitatory self-connection to design
different filters. Starting from one single recurrent neuron, we have observed that
this simple network with its specific parameters has the property of a low-pass
filter. As such it has comparable properties of an infinite impulse response fil-
ter in digital filter theory (IIR filter) because its recurrent connection provides
feedback to the system as the output of the IIR filter does. Based on this simple
low-pass filter network, by adding two recurrent neurons we obtained high- and
band-pass filters, where these neurons also act as hysteresis elements. The cut-
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off frequencies of the high-pass filter are controlled by only one self-connection;
while the upper and lower cutoff frequencies of the band-pass filter are deter-
mined by two self-connections. An advantage of the small number and limited
range of all relevant parameters (ws1,3, see Figs. 1(c) and 5(a)) is that these pa-
rameters could be self-adjusted for obtaining a desired frequency range through
a learning mechanism, like correlation based differential Hebbian learning [13],
or by evolutionary algorithms [5]. Moreover, the presented filter networks can
be implemented as analog filters by using Schmitt trigger circuits which also ex-
hibit the hysteresis effect. This kind of filtering technique is different from many
others [14], [15], [16], [17], [8], [7], [9] which are in use.

Several successful digital filter techniques have been developed, like Butter-
worth, Elliptic, Chebyshev filters, as well as by using Fourier methods [14]. In
general they are based on impulse and frequency response methods. As described
by [15], these classical methods, however, are founded on three basic assump-
tions: linearity, stationary, and second-order statistics with particular emphasis
on Gaussian characteristic. Thus advanced techniques like artificial neural net-
works have become an alternative way for in particular nonlinear signal pro-
cessing [15]. In most cases, feed-forward multi layer perceptrons (MLP) with a
gradient descend based learning algorithm have been extensively used for this
[16], [17]. On the other hand, the use of recurrent neural networks for digital
signal processing applications is now increasing, too. For example, Hagen et al.
[8] presented a multi-loop recurrent network with a cascaded structure to predict
an acoustic signal. Becerikli [7] used dynamic neural networks with Levenberg-
Marquardt based fast training for nonlinear filtering design. Squartini et al. [9]
employed echo state networks for identification of nonlinear dynamical systems
for digital audio processing. Compared to many of these approaches, we present
here a minimal and analyzable filter set based on simple neural dynamics. Due to
the neural dynamics, these filters provide a sharp cut-off but the shape of the out-
put signal is distorted; i.e., the filter networks act as nonlinear filters. Thus, these
networks are appropriate for applications like background noise elimination, or
non-speech sound recognition as shown here. One can also combine different
filter modules or modify the neural structure to achieve more complex signal
preprocessing [12]. To this end, we believe that here the described technique
for filter design may lead to another way of modelling sensory preprocessing
for robotic systems. More demanding tasks will be a deeper investigation of the
mathematical properties of these filter networks and their dynamical behavior
(e.g., spectral characteristics) using the framework of a nonlinear autoregressive
moving average (NARMA) model [18]. We will also intensively evaluate the ca-
pability of our networks by comparing them to conventional liner filters (i.e. IIR
filters).
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as by BMBF (Federal Ministry of Education and Research), BCCN (Bernstein
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