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Abstract. The purpose of this article is to present a novel learning
paradigm that extracts reward-related low-dimensional state space by
combining correlation-based learning like Input Correlation Learning
(ICO learning) and reward-based learning like Reinforcement Learn-
ing (RL). Since ICO learning can quickly find a correlation between
a state and an unwanted condition (e.g., failure), we use it to extract
low-dimensional feature space in which we can find a failure avoidance
policy. Then, the extracted feature space is used as a prior for RL. If we
can extract proper feature space for a given task, a model of the policy
can be simple and the policy can be easily improved. The performance
of this learning paradigm is evaluated through simulation of a cart-pole
system. As a result, we show that the proposed method can enhance the
feature extraction process to find the proper feature space for a pole bal-
ancing policy. That is it allows a policy to effectively stabilize the pole
in the largest domain of initial conditions compared to only using ICO
learning or only using RL without any prior knowledge.

Keywords: Unsupervised learning, Reinforcement learning, Neural
control, Sequential combination, Pole balancing.

1 Introduction

Living creatures, like humans and animals, can effectively learn solving a variety
of tasks. They can learn a correlation between an earlier stimulus (called predic-
tive signal) and a later one (called reflex signal) to react to the earlier stimulus,
not having to wait for the later signal. For example, heat radiation (predic-
tive signal) precedes a pain signal (reflex signal) when touching a hot surface.
Thus, they learn an anticipatory action to avoid the late unwanted stimulus
(i.e., avoiding to touch the hot surface). Such a learning mechanism is known
as correlation-based learning (or temporal sequence learning). Furthermore, the
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living creatures also have the ability to learn to react appropriately to particular
stimuli on the basis of associated rewards or punishments. This kind of learning
strategy is minimally supervised since they are not explicitly taught. Instead,
they must work this out for themselves on the basis of their past experiences
(exploitation), new choices (exploration), and the reinforcement. This learning
mechanism is known as reinforcement learning (RL). These two biological learn-
ing mechanisms have been applied to Artificial Intelligence (AI) from several
points of view including the development of adaptive autonomous robots [1].
Most AI studies have separately used such learning mechanisms to allow robots
to learn solving their tasks [2,3]. As a consequence, they might fail to solve some
tasks required evaluative feedback when using only correlation-based learning.
On the other hand, using RL without any prior knowledge (predefined control
parameters) for high-dimensional continuous-state systems often requires long
learning times. Thus a number of investigators have focused on building various
low-level control parameters before applying RL [4,5].
In contrast to the robot learning strategy, living creatures probably combine

both learning mechanisms in a way that fast correlation-based learning auto-
mates their intuition (i.e., providing low-level control parameters) which will
guide RL for effectively solving complex tasks. Following this, we propose here
how correlation-based learning (e.g., input correlation learning (ICO learning)
[2]) and RL (e.g., actor-critic RL [6]) can be combined in a sequential way such
that this learning paradigm extracts reward-related features to allow a policy
to accomplish a given task. If we can extract proper feature space for a given
task, a model of the policy can be simple, i.e., the policy with small number of
parameters can be used to accomplish the given task. Advantage of using the
simple policy is that it can be easily improved. We have chosen a pole balancing
problem as a first test since balancing an inverted pendulum provides a well
known class of control problems and often serves as a benchmark problem for
dynamical control. However, the main purpose of this article is not to demon-
strate the use of the combination between ICO learning and actor-critic RL for
the pole balancing system but to suggest that this learning paradigm can be an
efficient way to find reward-related feature space to solve dynamic sensorimotor
control problems. Note that in this study, policy parameters are fixed and only
the feature space is updated.
Before presenting the proposed learning strategy and its performance, in the

following section we first show how ICO leaning can be applied and quickly learn
to find the feature space for the pole balancing problem. Afterwards in section 3
we show how we sequentially combine ICO learning with actor-critic RL to mod-
ify the feature space to achieve better task performance. In section 4 we provide
comparison results of different learning mechanisms, followed by conclusions.

2 Correlation-Based Learning to Extract Feature Space

Here we present how ICO learning can be applied to extract the reward-related
feature space where its learning rule considers only cross-correlating two types



416 P. Manoonpong, F. Wörgötter, and J. Morimoto

of input signals with each other: earlier signals and a later one. As a concrete
example, we consider the pole balancing problem [7] (see Fig. 1a). The task is
to balance an inverted pendulum, which is mounted on a cart moving freely in
a one-dimensional interval, and to simultaneously avoid the interval boundaries.
The pole is free to move only in the vertical plane of the cart and track. This
cart-pole system is simulated on a desktop PC with dual-core Intel processors
at 2.4 GHz and updated by using Euler discretization with time steps of 0.01 s.
The system provides four state variables: angle of the pole with the vertical (θ),
pole angular velocity (θ̇), position of the cart on the track (x), and cart velocity
(ẋ). The cart is bound to move in the interval −2.4 < x < 2.4 [m] and the angle
is allowed to vary in the interval −12 < θ < 12 [◦]. The simulated model includes
all nonlinearities of the physical system (see [7] for the equations of this physical
cart-pole system).
The feature extraction method based on ICO learning (see Fig.1a) for this

dynamical system is modelled as a linear projection of four earlier signals (called
predictive signals) which are the state variables (θ, θ̇, x, ẋ) to one-dimensional
feature space. To update the feature space, we use a later signal (called a reward
(penalty) signal, r) which is a signal given just before the system fails. The reward
signal has a negative value (−1.0), if x < −2.35 m, x > 2.35 m, θ > 11.5◦, or
θ < −11.5◦, and 0 otherwise. All the state inputs (θ, θ̇, x, ẋ) are scaled onto the
interval [−1, 1] as described in [8]. A projection from original state space to the
low-dimensional feature space Z is specified by:

z(t) = wTx(t), (1)

where z ∈ Z ⊂ R, and x is the original state vector while w represents synap-
tic weights (projection vector). These weights which are initially set to 0.0 get
changed by ICO learning using the cross-correlation between the predictive sig-
nals and a change of the reward signal. They are given by:

w(t+ 1) = w(t) + μ|x(t)|q, (2)
q = |min(0, Δr(t))|, (3)

where Δr(t) = r(t + 1) − r(t) denotes the change of the reward signal and
μ = 1.0× 10−4 is a learning rate.
Here we consider the reflex output U(t) as a part of control output as suggested

in [2]:

U(t) =

⎧⎨
⎩
1.0 : x(t) < −2.35 m or θ(t) > 11.5◦

−1.0 : x(t) > 2.35 m or θ(t) < −11.5◦
0.0 : otherwise.

(4)

By using domain knowledge, we can construct a failure avoidance policy of the
cart-pole system in the low-dimensional feature space:

u(t) = Gz(t) + U(t), (5)

where G is a parameter of the policy (i.e., gain in this case). Here, it is set
to 10.0 [7]. According to this setup ICO learning will gradually develop the
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synaptic weights w (see Fig. 1) to obtain the appropriate projection vector from
the original state space to the feature space for balancing the pole and also
avoiding the cart to hit the interval boundaries (i.e., failure avoidance policy).
To test the performance of the proposed feature extraction method using ICO

learning for this dynamical pole balancing task, we let it learn to balance the pole
on 25 x 49 initial conditions (θ, x) represented by squares in Fig. 1b while θ̇ and ẋ
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Fig. 1. (a) Feature extraction using ICO learning for the cart-pole system. Only one
learning path instead of four is shown for clarity (see text for more details). (b) Per-
formance of the policy on benchmark initial conditions. Colored area denotes a typical
domain for successful control (≈ 68 %) where the color-coded bar presents the number
of trials from start to success. White area represents a domain in which the policy fails
to balance. (c)–(f) Resulting weights, i.e., projection vectors, (wθ, wx, wθ̇, wẋ) after
learning. Note that all weight values in the white lower left and upper right corners,
where the system fails, are removed for clarity. The area inside a dashed frame of each
diagram shows the weights which will serve to generate prior weight distribution for the
reward-based learning. (g) Path in (x, θ)-space for arbitrary initial condition (x = −0.5
m, θ = −4 deg) under control of the weight distribution.
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are initially set to small random values representing the system noise. Each trial
during a run starts with a given initial state and ends either in “success” (which
occurs when the pole is kept in balance for at least 1000 seconds) or “failure”
(which occurs when the pole falls 12 deg to either side or the cart moves 2.4 m to
either side). A run at each initial condition is terminated when either a successful
trial achieved or the maximum number of trials is reached (e.g., here 1.0× 105

trials). During this learning process the system is reset to the same initial state
at failure. We observe that the policy defined in the extracted feature space
(see Eq. (5)) is able to balance the pole and avoid the ends of the interval in a
relatively large (x, θ)–domain of initial conditions (see Fig. 1b). It is important
to note that each trial generally uses so much less computing power resulting
in a fast learning speed compared to other techniques (see comparison section
below). Figures 1c–f show the resulting projection vector (or learned weights,
wθ, wx, wθ̇, wẋ) in the successful domain. Figure 1g exemplifies the behavior of
the system displaying a path in (x, θ)-space for arbitrary initial condition (e.g.,
x = −0.5 m, θ = −4 deg) of the cart-pole system.

3 Reward-Based Learning to Extract Feature Space

As shown in a previous section, one can see that the reward-related feature
space extracted by ICO learning can be efficiently used for the pole balancing
problem in a relatively large domain of initial conditions (see Fig. 1b). However,
it still fails to stabilize the system at initial conditions in the critical corners
of the benchmark domain (upper-right and lower-left areas in Fig. 1b). This is
because correlation-based learning can only adapt the weights by recognizing
a correlation between immediate reward (punishment) and it can not evaluate
future (delayed) reward. Thus here we investigate whether the extracted feature
space can be further modified so that the policy can stabilize the system in this
domain.
To do so, we apply (continuous-state) reinforcement learning (RL) [6], [7]

since its learning rule considering an association between stimuli and/or ac-
tions with the reinforcement that an agent receives can evaluate the future (de-
layed) reward. We use the actor-critic type RL that can be divided into two
sub-mechanisms: the learning of the feature space (actor) and the learning of an
evaluation function (critic). The feature extraction part is designed to have the
same circuit as the feature extraction process of ICO learning (compare Figs. 1a
and 2a).
For the critic network, we use a normalized Gaussian neural network (see

Fig. 2a) as a function approximator to represent the value function or the pre-
diction (V , see [6] for more details including equations). In this cart-pole system,
the network has 162 hidden neurons (H1,...,162, see Fig. 2a) where centers are
fixed on a grid according to the boxes approach [7]. The learning rate of this
critic network is manually adjusted. It is set to, e.g., 0.6. The TD error is com-
puted from the prediction as δ(t) = r(t) + γV (t) − V (t − 1). r is an external
reinforcement signal (−1 when failure occurs, 0 otherwise) [7]. γ is a discount
factor, i.e., distant rewards are less important. We set it to 0.95 based on [7].
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Fig. 2. (a) Feature extraction using actor-critic RL for the cart-pole system. (b) Perfor-
mance of the policy defined in the extracted feature space. The prior weight distribution
are given by the learned weights by ICO learning. Colored area denotes a typical do-
main for successful control (≈ 84%) where the color-coded bar presents the number
of trials until success. White area represents the domain in which the policy fails to
balance. Area inside a white dashed frame shows the initial conditions on which the
policy can stabilize the system without actor-critic RL. Area inside red frames shows
improvement of the feature space achieved by actor-critic RL.

Here we modify the feature space Z through Bayesian update given by:

P (w|uob,x) =
P (uob|w, x)P (w)∫
P (uob|w, x)P (w)dw , (6)

where P (w) = N (w|μw, Σw) is the prior probability of weight distribution
given by ICO learning for the first iteration. Since ICO learning tends to acquire
different weighs when the learning process starts from different initial condi-
tions, we estimate mean μw and variance Σw from the learned weight vectors.
P (u|w, x) = N (u|μu, σu) is the control policy. Note that we use the result of
ICO learning as the prior only for the first update. From the second update, we
use the weight distribution derived in previous iteration as the prior.
Here we consider the feature z = wTx. The mean output of the policy is

designed as μu = Gz. The observation of the control output uob in Eq. (6) is
acquired from the RL framework:

uob = μu +Δu, (7)

where

Δu = αδ(u − μu). (8)

Here δ is the TD error and α is a scaling parameter that corresponds to the
learning rate.
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Figure 2b shows the performance of the policy defined in the feature space
using actor-critic RL where the prior weight distribution P (w) are derived from
ICO learning. It can be seen that the policy can now stabilize the system in a
larger domain (≈ 84%, i.e., ≈ 16% more, see red frames in Fig. 2b) including
some parts of the critical initial conditions. The remaining parts (white areas)
seems to be difficult to achieve by using linear control. The results we obtained
here are comparable to [8] where linear control using an evolutionary algorithm
for weight adaptation is employed. Furthermore, we observe that actor-critic RL
only starts to optimize the weights in the domain where the initial feature space
is not proper to stabilize the system (colored area outside a white dashed frame in
Fig. 2b). In fact there are a few initial conditions of the system where actor-critic
RL requires a lot of trials (> 2000 trials, see triangular areas near the dashed
frame in Fig. 2b) while most of them can be achieved after around 5–2000 trials.
By contrast, if the actor weights are not appropriately given at the beginning
(e.g., initially setting them to 0.0) actor-critic RL needs to learn in the whole
domain. It also requires much more trials for each given initial condition and
the policy can stabilize the system in a smaller domain (see Fig. 3). From this
point of view, our experimental results suggest that providing the appropriate
prior to actor-critic RL can speed up the learning process and also allows it to
efficiently extract feature space.
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Fig. 3. (a) Histogram showing the average of success rate of each learning model; i.e.,
percentage of success in the total 25 x 49 set of initial conditions ((x, θ)–domain).
(b) Histogram showing the average of the total elapsed simulated physical time of all
success for each learning model. The elapsed times are recorded from starting until
ending in success where failure cases are ignored. ICO and RL: the feature extraction
using ICO learning and actor-critic RL, respectively, where all weights are initially
set to 0.0, ICO → RL: the feature extraction using actor-critic RL but all weights
are predefined by the weight distribution obtained from ICO learning. Note that in
this comparison, all learning models use the same parameters, like learning rate and
discount factor.

4 Comparison Results

In this section, we compare the performance of this learning model with the
original ones. The results are shown in Fig. 3. It can be seen that ICO learning
can quickly learn to find appropriate feature space in a relatively large domain
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of initial conditions while actor-critic RL is very slow and can achieve success
only in a smaller domain if we limit the maximum number of trials. However,
the performance of the policy can be strongly improved by using prior weight
distribution generated by ICO learning for actor-critic RL. As a consequence,
the policy succeeds for the larger initial condition domain.

5 Conclusions

In this study, we proposed a new learning paradigm that sequentially combines
ICO learning and actor-critic RL to extract feature space for a dynamical sys-
tem. In concrete, we consider the pole balancing task as the dynamical system.
To a certain extent the experimental studies pursued here sharpen our under-
standing of how correlation-based learning can be combined with RL to find the
low-dimensional feature space. In future work, we will investigate the theoretical
properties of this learning model and its dynamical behavior. We will also apply
this learning strategy to real robotic tasks, like adaptive walking or mobile robot
control.
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