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Controlling sensori-motor systems in higher animals or complex robots is a challenging combi-

natorial problem, because many sensory signals need to be simultaneously coordinated into a broad

behavioral spectrum. To rapidly interact with the environment, this control needs to be fast and

adaptive. Current robotic solutions operate with limited autonomy and are mostly restricted to few

behavioral patterns. Here we introduce chaos control as a novel strategy to generate complex be-

havior of an autonomous robot. In the presented system, 18 sensors drive 18 motors via a simple

neural control circuit, thereby generating eleven basic behavioral patterns (e.g., orienting, taxis, self-

protection, various gaits) and their combinations. The control signal quickly and reversibly adapts

to novel situations and additionally enables learning and synaptic long-term storage of behaviorally

useful motor responses. Thus, such neural control provides a powerful yet simple way to self-organize

versatile behaviors in autonomous agents with many degrees of freedom.

Specific sensori-motor control and reliable movement generation constitute key prerequisites for goal-

directed locomotion and related behaviors in animals as well as in robotic systems. Such systems need to

combine information from a multitude of sensor modalities and provide – in real-time – coordinated outputs

to many motor units [1]. Already in relatively simple animals, such as a common stick insect or a cockroach,

about 10 to 20 different basic behavioral patterns (several different gaits, climbing, turning, grooming,

orienting, obstacle avoidance, attraction, flight, resting, etc.) arise from about ten sensor modalities (e.g.,

touch sensors, vision, audition, smell, temperature and vibration sensors) controlling on the order of 100

muscles. Nature apparently has succeeded in creating circuitries specific for such purposes [2, 3, 4, 5] and

evolution has made it possible to solve the complex combinatorial mapping problem of coordinating a large

number of inputs and outputs.

Conventional sensor-motor control methods for technical applications do not yet achieve this proficiency.

They typically use for each behavioral output (e.g. each walking gait) one specific circuit (control unit), the

dynamics of which is determined by several inputs. For example, one may decompose one complex behavior

into a set of simple behaviors each controlled by one unit ([6] "subsumption architecture"). In this approach

of behavior-based robotics, sensors couple to actuators in parallel. However, conventional methods are

difficult to use in self-organizing, widely distributed multi-input multi-output systems [7, 8]. For many

such systems, neural control appears more appropriate due to its intrinsically distributed architecture and its

capability to integrate novel behaviors [9–16].

In this study we address a complex high-dimensional coordination problem employing one small neural

circuit as a central pattern generator (CPG). The goal is to generate different gaits in an adaptive way and at

the same time to coordinate walking with other types of behaviors (such as orienting). To achieve this, the
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employed CPG circuit has an intrinsically chaotic dynamics similar to that observed in certain biological

central pattern generators [17]. By means of a newly developed control method we solve the conjoint

problem of simultaneously detecting and stabilizing unstable periodic orbits. The method is capable of

controlling many different periodic orbits in the same CPG, each of which then leads to one specific activity

pattern of the agent. This happens in an autonomous and adaptive way because the states of the sensory

inputs of the agent at each moment determine which period to control. As a consequence, the circuit can

quickly adapt to different situations. Followed by generic neural postprocessing, this generates a wide range

of specific behaviors necessary to appropriately respond to a changing environment. Furthermore, chaotic,

uncontrolled dynamics proves behaviorally useful, e.g., for self-untrapping from a hole in the ground.
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Fig. 1: The six-legged walking machine AMOS-WD06 and the sensor-driven neural control setup.(A) AMOS-WD06 with
20 sensors (green arrows, 18 used here, IR sensors (IR5,6) at the middle legs switched off and not used (but see [19] for their
functionality)). (B) Examples of joints at the right hind legR3. Red-dashed arrows show directions of forward (+)/backward (−)
and up(+)/down(−) movements (see supplementary information andSupplementary Figure 1for more details). TC-joint refers to
the thoraco-coxal joint for forward (+) and backward (−) movements. It corresponds to TR1,2,3 and TL1,2,3 in (C). The CTr-joint
refers to the coxa-trochanteral joint for elevation (+) and depression (−) of the leg. The hexapod possesses six such joints, three
(CR1,2,3) on its right and three (CL1,2,3) on its left, cf. panel(C). The FTi-joint refers to the femur-tibia joint for extension (+) and
flexion (−) of the tibia. This corresponds to FR1,2,3 and FL1,2,3 in panel(C). (C) Scheme of the hexapod AMOS-WD06 with 20
sensors (green), all 18 leg motor-controlled joints and one backbone joint (blue).(D) Wiring diagram of the neural control circuit
(central pattern generator, CPG) consisting of only two neurons with statesxi, i ∈ {1, 2} and three recurrent synapses of strengths
w11, w12, andw21. Theci are self-adapting control signals andµ is the control strength (see eqs. (2), (3), (4) and text for details).
(E) The setup of sensor-driven neural control for stimulus induced behavior of AMOS-WD06 (see text for functional description
and supplementary information andSupplementary Figure 2for more details).

In addition to fast, reactive adaptation based on neural chaos control (required to deal with sudden

changes at sensor inputs), the CPG-circuit introduced here allows also for learning on longer time scales

by synaptic plasticity. This way the system may also permanently accommodate re-occurring correlations



3

between sensor inputs and motor outputs enabling the agent to gradually learn to improve its behavior.

As a prototypical example we consider a multi-sensor multi-motor control problem of an artificial hexa-

pod to create typical walking patterns emerging in insects [18] as well as several other behaviors. We solve

two linked control problems for the artificial hexapod AMOS-WD06 (Fig. 1A, B) [19]: sensor-driven gait

selection [20] and sensor-driven orienting behavior [19, 20]. For sensor-driven gait selection, the system

receives simultaneous inputs from thirteen sensors (cf.Fig. 1A, C): two light-dependent resistor sensors

(LDR1,2), six foot contact sensors (FC1,...,6), one gyro sensor (GR), one inclinometer sensor (IM), one cur-

rent sensor (I), one rear infra-red sensor (IR7) and one auditory-wind detector sensor (AW). They coact to

determine the dynamics of a very small, intrinsically chaotic two-neuron module (described below) that

serves as a central pattern generator (CPG). After postprocessing, the CPG output (Fig. 1D, E) selectively

coordinates the action of 18 motors into a multitude of distinct behavioral patterns. Sensor-driven orienting

behavior is controlled via four additional infra-red sensors (IR1,2,3,4) together with the two light-dependent

resistor sensors (LDR1,2) that generate different types of tropism, e.g., obstacle avoidance (negative tropism)

and phototaxis (positive tropism) through two additional standard (non-adaptive) neural subnetworks: one

phase switching network (PSN) and two identical modules of a velocity regulating network (VRNs) (see

[19] and supplementary information for more details). In addition, one upside-down detector sensor (UD)

serves to activate a self-protective reflex behavior when the machine is turned into an upside-down position.

In the following, we describe the sensor-driven gait control technique that is based on chaos control. The

supplementary information describes the technique of controlling sensor-driven orienting behavior.

To solve the combinatorially hard mapping problem of generating a variety of gait patterns from multiple

simultaneous inputs, we use a simple module of two neuronsi ∈ {1, 2} (Fig. 1D) as a CPG. The discrete

time dynamics of the activity (output) statesxi(t) ∈ [0, 1] of the circuit satisfies

xi(t + 1) = σ

θi +
2∑

j=1

wijxj(t) + c
(p)
i (t)

 for i ∈ {1, 2} (1)

whereσ(x) = (1 + exp(−x))−1 is a sigmoid activation function with biasesθi andwij is the synaptic

weight from neuronj to i. The control signalsc(p)
i (t) act as additional biases that depend on a single

parameterp only (the period of the output to be controlled) and are uniquely determined by the sensory

inputs. (cf. Table 1). We use synaptic weight and bias parameters (seeMethods) such that the circuit

exhibits chaotic dynamics if uncontrolled (c
(p)
i (t) ≡ 0), cf. Fig. 2A.

In contrast to previous general methods of controlling chaos [21, 22] the method developed and employed

here both detects and stabilizes periodic orbits at the same time and is implemented in a neural way. The



4

signalc(p)
i (t) is self-adapting and controls the dynamics of thexi(t) to periodic orbits of periodp that are

originally unstable and embedded in the chaotic attractor, cf. [21, 23, 24, 25, 26]. The fact that there is

only one CPG makes the control approach conceptually simple, easy to implement and, as shown below,

enables the system to self-adapt to novel combinations of sensory signals. Note, the combination of these

traits and their biological interpretation could not be so easily achieved with any other pattern generation

method (like e.g., a random generator). For a periodp the control signal

c
(p)
i (t) = µ(p)(t)

2∑
j=1

wij∆j(t) (2)

depends on

∆j(t) = xj(t)− xj(t− p) (3)

for j ∈ {1, 2} of state differences after one periodp and is applied everyp + 1 time steps (∆j(t) = 0 and

thusc
(p)
i (t) = 0 at all other times) such that each point of a periodic orbit is controlled sequentially. The

control strengthµ(p) adapts according to

µ(p)(t + 1) = µ(p)(t) + λ
∆2

1(t) + ∆2
2(t)

p
(4)

with adaption rateλ. The control strength is initialized toµ(tinitial) = −1 wheneverp changes. Here the

scaling of the learning increment is heuristically chosen as1/p because a useful learning rate is found to

decrease with increasing periodp.

Figure 2A illustrates that the method successfully generates distinct periodic orbits of different periods,

which in turn serve as CPG output patterns. Without control, the CPG signal is chaotic. When being

controlled, the CPG dynamics reliably switches to one out of a large variety of periodic outputs (Fig. 2B)

and control is successful over a wide range of adaption rates (Fig. 2C). As the chaotic attractors in various

dynamical systems contain a large (often infinite) number of unstable periodic orbits [21, 23, 24, 25] it

is in general possible to stabilize many different periodic orbits in essentially any given one chaotically

oscillating module that may then serve as a CPG. In particular, the functionality is insensitive to variations

in the precise module dynamics and a specific type of CPG or a multiple-unit CPG are not required.

Combining the adaptive neural chaos control circuit presented above with standard PSN and VRNs
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Fig. 2: Control of unstable periodic orbits in the chaotic CPG module.(A) CPG dynamics without control (chaotic) and with
control to specific periodic orbitsp ∈ {1, 4, 5, 8, 9}. Activity xi(t) of neuronsi = 1 (red) andi = 2 (green) are shown for
some time windowt ∈ [600, 630] along with the average activityxav=(x1(t) + x2(t))/2 (blue). (B) Switching between different
periodic orbits (period indicated) and chaos (c) (adaption rateλ = 0.05). The upper graph shows the average network outputxav

(thin dot, left axis) and control strengthµ (thick dot, right axis) for different target periodsp. The lower graph shows the time
intervals of the control state (on/off). The target period is changed every 2500 time steps (according to the top legend of panel(B)),
while at the same time the control strengthµ is reset to zero. For the first five target periods, control is intermediately switched off
for some time intervals such that the system exhibits chaotic dynamics. For the final six periods, control remains active such that
direct switching between periodic orbits occur with chaotic dynamics only transiently. With increasing target periods, the control
strength tends to adapt to decreasing valuesµ. (C) Fraction of correctly controlled periods as a function of adaptation rate and
period, color coded from black (100% correct) to white (0% correct). Every period is investigated for adaption rates in the range
−log λ ∈{ 1.2, 1.5,..., 6.3} for 121 different random initial conditions. An unstable periodic orbit of period three apparently does
not exist in the uncontrolled dynamics.

postprocessing (cf. alsoFig. 1E) now enables sensor-driven control of a large repertoire of behaviors. The

extracted periodic orbits generate the different gaits (Fig. 3andSupplementary Video 1), chaotic dynamics

actively supports un-trapping (cf.Fig. 3D vs E), and orienting behavior arises simultaneously, controlled

by additional sensory inputs. These features enable the robot to match environmental with behavioral com-
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plexity (Supplementary Video 2); in particular, they create specific targeted behaviors such as phototaxis

(positive tropism) and obstacle avoidance (negative tropism) (Supplementary Video 3).

Figure 3A,B,C exemplifies a sequence of eight different behaviors (Supplementary Video 2): stan-

dard walking in a tetrapod gait, up-slope walking in a wave gait, rough-terrain walking in a wave gait,

self-untrapping through chaotic motion (Supplementary Figure 6andVideo 4), down-slope walking in

a mixture gait (between wave and tetrapod gait), active phototaxis by fast walking in a tripod gait, and

resting. As soon as obstacles are detected, the machine moreover performs obstacle avoidance by turning

appropriately (Supplementary Figure 5). Here the irregular chaotic ’ground state’ of neural activity (cf.

[27, 28, 29, 30, 31]) serves as an intermediate transient state that allows for fast behavioral switching. As

soon as the robot gets trapped it actually operates chaotically and exploits chaos for efficient untrapping

(Fig. 3D). This demonstrates the capability of the robot to quickly alter its behavior in response to changing

stimulus features from the environment.

The sensor-motor mapping so far was pre-assigned but can also easily be learned (Fig. 4A). All artificial

CPGs built to date, including ours, directly map periodic gait patterns (p) to motor patternsm. The most

difficult open problem here, thus, is to assure that periodsp are selected appropriately given different sensory

input conditionss, and hence to learn a suitable mappings → p (Fig. 4A). As the chaos-control strategy

uses only one single CPG, the learning problem becomes simple and is solved using only one more single

neuron that exhibits plastic synapses. Plasticity is based on standard error minimization learning, which we

will describe in general terms next (for details seeMethods).

The state variablev of the learning neuron linearly sums many sensor inputssk to v =
∑

k ωksk, where

ωk are the synaptic weights to be learned. We randomly assign periods to neuron states in an arbitrary (but

fixed) wayv → p (Fig. 4A) such that different output levels ofv result in different gaits. We will now

discuss an example where we use a steep and slippery slope on which the agent walks upwards. Of all the

agent’s sensors, only the inclinometerss (slope sensor) will be reliably triggered on the slope. Assuming

that its weight learns according todωs/dt ∼ ss, the weight would grow gradually whenever a slope is

sensed (ss > 0), leading to increasingv as long as the agent stays on the slope. As the mapv → p is fixed,

the agent checks different values ofp one by one trying out different gaits. As a biologically motivated

constraint, we now impose in addition that the robot should choose to climb using an energy saving gait

[32]. By this we define a mechanism that stops learning at that level ofv, where such a gait is selected.

This is achieved by minimizing an error terme that compares actual energy uptake to the (low) energy

update of the default gait on flat terrain. If, while climbing, the agent chooses an energy saving gait, this

error will drop to zero. We, thus, modify our learning rule to rely on the product of error and sensor signal,

dωs/dt ∼ ss ·e, such that learning stops as soon as the error is essentially zero. This happens whenωs (and,
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Fig. 3: Chaos-controlled CPG generates sensor-induced behavioral patterns of the hexapod AMOS-WD06.(A) Examples of five
different gaits (see alsoSupplementary Figure 4andVideo 1) observed from the motor signals of the CTr-joints (cf.Fig. 1B) and
walking speeds for these gaits. Throughout the figure, blue areas indicate ground contact or stance phase and white areas refer to
no ground contact during swing phase or stepping into a hole during stance phase.(B) Walking parcour of the hexapod including
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2). Behavioral patterns and associated periods of the CPG are indicated.(C) Gait patterns (expressed as CTr-joint motor signals)
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thus,v) have grown to exactly the point wherep for the lowest energy gait is selected.

Figure 4B illustrates the dynamics of this learning experiment. Here the weightωs of the slope sensorss

grows, whereas any uncorrelated synapse, e.g.,ωg from the gyro sensorsg, remains unaffected (Fig. 4B).

This demonstrates that only the relevant synapses learn. The outputv of the learning neuron (Fig. 4A)

follows these changes and determines, via a threshold mechanism, different values ofp (Fig. 4B). As soon

asp selects the energy saving slow wave gait (herep = 9), the errore drops to zero, stabilizing synapses

and thereby fixing that gait. As the synaptic values remain stored, the next time the hexapod encounters this

slope, the inclination sensor will immediately be triggered leading to the same outputv and, hence, again

to the selection of the slow wave gait (Fig. 4B, right: experiment 2).

In our single-CPG system learning is much simplified by the fact that it only has to learn the single map

s → p. Thus, the same neuronv can also be used to learn other sensor-motor mappings. For instance, in a

second example of learning (Supplementary Figure 7 and Video 6) we demonstrate how the robot learns

to escape from danger by choosing a particularly fast gait.

Thus single-CPG control based on stabilizing unstable periodic orbits enables self-adaptation of the

required sensor-motor mappings ↔ m. This furthermore underlines a central advantage of the single-CPG

approach where pattern generation is robust and learning becomes simple such that additional sensor-motor

conjunctions can also be implemented.

We have thus synthesized an integrated system, in which a small, intrinsically chaotic CPG module

brings together fast adaptivity in response to changing sensor inputs with long term synaptic plasticity.

Both mechanisms operate on the same network components. The key ingredient here is the time-delayed

feedback chaos control that simultaneously detects and stabilizes the dynamics of originally unstable peri-

odic orbits in a biologically inspired, neural way. It is capable of controlling a large number of different

periodic orbits of higher periods, a feature not normally achieved in a robust way by standard time-delayed

feedback methods [23]. This finally permits implementing learning in an efficient way, namely as a mode

selection process at the CPG.

As a consequence, the new strategy enables flexibly configurable control that is readily implemented

in hardware, cf. [19]. As it is based on controlling unstable periodic orbits in a generic chaotic system,

it does not sensitively depend on the details of the dynamics. For instance, the two-neuron architecture is

not necessary and larger chaotic circuits work in a similar way. For the same reason, our strategy may be

generalized to integrate other behavioral patterns and can also be applied for controlling different types of

kinematic (position controlled) walking machines and behaviors. Transfer to dynamic walking [33] might

be possible, too, but would require adding control of additional state variables (e.g. forces).

The chosen design is inspired by neural structures found in insects. These combine adaptive CPG
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function [34] with post-processing ([35], [36]) similar to the phase-switching network (PSN, [37]) and

velocity regulating network (VRN, [38]) employed here. Individual such network components had been

used in earlier studies and successfully provided partial solutions to artificial motor control problems [9–

16] indicating that neural control is an efficient way for solving complex sensori-motor control problems.

For example, Collins and Richmond [11] have used a network of four coupled nonlinear oscillators as

hard-wired central pattern generators to produce and switch between multiple quadrupedal gait patterns by

varying the network’s driving signal and by altering internal oscillator parameters. However, embodied

control techniques [39] for generating a variety of gait patterns [33, 40] jointly with other sensor-driven

behaviors [40] in a system with many degrees of freedom are still rare [13, 14]. Moreover, these systems

either rely on only a smaller number of sensors and motors, or, if more motors are present [9], their

coordination forms low-dimensional dynamics such as waves that constrain the motor behavior to snake-

or salamander-like patterns with a uniform gait. Both, small numbers of inputs and outputs and behavioral

restrictions reduce the sensor-motor coordination problem substantially.

The capabilities of biological CPGs to generate chaotic as well as periodic behavior led to the hypothesis

that chaos could serve as a ground state for the generation of large behavioral repertoires by the neural

activity in these systems (for review see [41]). The current study now realizes this idea and our chaos-based

approach enables a complex combination of walking- and orienting-behavior. It simultaneously supports

autonomous, self-organized and re-configurable control by adaptively selecting unstable periodic orbits

from the chaotic CPG-module. Such CPGs might moreover be used for mutual entrainment between neural

and mechanical components of a behaving system [42, 43]. Adding such features, however, would require

further investigations that are more system-specific.

Taken together this work suggests how a chaotic ground state of a simple neuron module may be used

in a versatile way for controlling complex robots. It further demonstrates that chaos may also play an

active, constructive role for guiding the behavior of autonomous artificial as well as biological systems. The

current study still focuses on reactive motor behavior. As periodic orbits may be controlled also over longer

periods of time, these systems also offer the future possibility of implementing short term motor memory.

Decoupling the centralized control of the CPG from direct sensor inputs would make it more persistent. This

opens up the opportunity of implementing behavioral components that make the robotic system capable of

navigating and moving with a certain degree of memory-based planning and foresight [44, 45].
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Methods:

Neural control: Sensor-driven neural control for stimulus induced walking behaviors consists of four

neural modules: neural preprocessing, adaptive neural chaos control (CPG), neural CPG postprocessing,

and neural motor control (Fig. 1E). The controller acts as an artificial perception-action system through a

sensori-motor loop. All raw sensory signals go to the neural preprocessing module. It consists of several

independent components which eliminate the sensory noise and shape the sensory data (see supplementary

information for more details). The preprocessed light dependent resistor (LDR1,2), foot contact (FC1,...,6),

gyro (GR), inclinometer (IM), and rear infra-red (IR7) sensor signals (Fig. 1) are transmitted to the adaptive

neural chaos control module. Simultaneously, other preprocessed infra-red (IR1,2,3,4), upsidedown detector

(UD) as well as the LDR1,2 sensor signals (Fig. 1) are fed to the neural motor control module.

In the adaptive neural chaos control module, a target period for the chaos control is selected according

to the incoming sensor signals (see supplementary information). This module performs as a CPG where

its outputs for different periods determine the resulting gait patterns of the machine (according to Table 1).

Here we set the bias values of the CPG circuit asθ1 = −3.4, θ2 = 3.8 and the three operating synapses as

w11 = −22.0, w12 = 5.9, w21 = −6.6 (w22 = 0.0), such that it exhibits chaotic dynamics if uncontrolled

(c(p)
i (t) ≡ 0), cf. Fig. 2A. The control strategy is robust against changes of these parameters because it

simply relies on the CPG exhibiting chaotic dynamics. It is important to note that chaos on the one hand

serves as a ground state of the CPG module, on the other hand it is also functionally used for self-untrapping.

The CPG outputs are passed through the neural CPG postprocessing module for shaping the signal

that enters the neural motor control module. The CPG postprocessing module is composed of two single

recurrent hysteresis neurons (more details in supplementary information) which smooth the signals and

two integrator units which transform the discrete smoothed signals to continuous ascending and descending

motor signals. Finally, two fixed, non-adaptive subnetworks, PSN and VRNs, of the neural motor control

module (Supplementary Figure 6) regulate and change the CPG signals to expand walking capability

allowing turning as well as sidewards and backwards walking. In earlier studies we have shown that the

employed networks are robust within a wide range of parameters [19]. In fact, it is even possible to employ

identical VRNs (without change in structure or in parameters) in quadruped robots [46] and transfer the

PSN as well as the VRNs to eight-legged machines [19].

Learning: Beyond sensor-driven neural control, we additionally use a modified Widrow-Hoff rule [47] as

a learning mechanism to minimize energy consumption as a learning goal (see supplementary information

for other learning goals). We define the output of the learning neuron asv =
∑

k ωksk and the rule as

dωi/dt = α · e · si, whereα � 1 is the learning rate. The errore is given ase =< Ia − Id >Θ, the symbol

< > denotes averaging over 20 seconds and we set the error to zero if it is smaller thanΘ = 0.01. The
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variableIa is the currently used motor current of all motors measured by a sensor (Fig. 1A,C) andId is the

default current. This is the average current used in a tripod gait on flat terrain.

Walking machine platform: The six-legged walking machine AMOS-WD06 is a biologically-inspired

hardware platform. It consists of six identical legs where each of them has three joints (three degrees of

freedom). All joints are driven by standard servomotors. The walking machine has all in all 20 sensors

described in the main section where the potentiometer sensors of the servomotors are not used for sensory

feedback to the neural controller. We use a Multi-Servo IO-Board (MBoard) to digitize all sensory input

signals and generate a pulse width modulated (PWM) signal to control servomotor position. For the robot

walking experiments the MBoard is connected to a personal digital assistant (PDA) on which the neural

controller is implemented. Electrical power supply is provided by batteries: one 7.4 V Lithium polymer

2200 mAh for all servomotors, two 9 V NiMH 180 mAh for the electronic board (MBoard) and the wireless

camera, and four 1.2 V NiMH 2200 mAh for all sensors (see supplementary for more details).

Table I: List of different behaviors achieved given environmental stimuli and conditions. "Default" means without
specific input signals. Note that the mapping between a gait and a period is simply designed by using the fastest
useful period, which is p = 4 (p = 2 is too fast, p = 3 does not exist) for the fasted gait and so on, where then p = 9 is
the slowest gait. Period p = 7 is in shape very similar to p = 6 and, therefore, it is not used.

Environmental stimuli and conditions Period (p) Behavioral pattern

Level floor p = 5 Tetrapod gait
Upward slope p = 8 Fast wave gait
Rough terrain (hole areas) p = 8 Fast wave gait
Losing ground contact chaos Self-untrapping
Downward slope p = 6 Transition or mixture gait
Light stimuli p = 4 Tripod gait and orienting

toward stimuli
Strong light stimuli p = 1 Resting
Obstacles p = 4,5,6,8, or, 9 Orientating away from

stimuli
Turned upside-down p = 4,5,6,8, or, 9 Standing upside-down
Attack of a predator p = 4 Tripod gait (escape behavior)
Default p = 9 Slow wave gait
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