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1 Materials and methods

The first section describes the biomechanical setup of the six-legged walking machine
“AMOS-WD06”, followed by details of the sensor-driven neural controller and its sub-
modules.

1.1 The six-legged walking machine AMOS-WD06 (Biomechanics)

The six-legged walking machine AMOS-WD061 (Supplementary Figure 1A,B) is a hard-
ware platform for studying the coordination of many degrees of freedom, for performing
experiments with neural controllers, and for the development of artificial perception-action
systems employing embodied control techniques.

It consists of a two-part body connected by one backbone-joint (BJ), at which six
identical legs and one tail are attached. Each leg has three joints (three degrees of freedom)
that are controlled by electro-motors: the thoraco-coxal (TC-) joint enables forward (+)
and backward (−) movements, the coxa-trochanteral (CTr-) joint enables elevation (+) and
depression (−) of the leg, and the femur-tibia (FTi-) joint enables extension (+) and flexion
(−) of the tibia (Supplementary Figure 1B). The morphology of these multi-jointed legs
is modelled on the basis of a cockroach leg (Supplementary Figure 1C,D and see (1) for
more details) but the tarsus segments are ignored. Each tibia contains a spring compliant
element to absorb impact force as well as to measure ground contact during walking.

The body of AMOS-WD06 consists of two segments: a front segment where two
forelegs are installed and a central body segment where the two middle and the two hind
legs are attached. They are connected by one active backbone joint inspired by the inver-
tebrate morphology of the American cockroach’s trunk (Supplementary Figure 1 and see
(2) for more details). This backbone joint is for up- and downward bending, which allows
the walking machine to climb over obstacles. The applications of the neural chaotic con-
troller presented here and in the main manuscript text keep this joint fixed; however, the
application is readily extended to also use this joint2. All leg joints are driven by analog
servomotors, while the backbone joint is driven by a digital one. The size of the walking
machine is 30 cm wide, 40 cm long, 12 cm high without its tail. The length of the tibiae
is 10 cm. They are attached to the FTi-joints, roughly resembling the length of real tibiae

1Advanced MObility Sensor driven-Walking Device 06.
2For autonomous climbing over obstacles, we refer the reader to the video clip at

http://www.manoonpong.com/AMOS/Climbing/AMOSclimbing.mpg. Note that describing the con-
troller of this climbing behavior developed based on the proposed sensor-driven neural controller will go
beyond the scope of this article.
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in relative size compared to the total machine. The weight of the fully equipped robot
(including 21 servomotors, all electronic components, sensors, and a mobile processor) is
approximately 4.2 kg. Electrical power supply is provided by batteries.
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Supplementary Figure 1:The six-legged walking machine AMOS-WD06 inspired by the morphol-

ogy of the American cockroach. (A)Climbing position of AMOS-WD06 with a body flexion joint.(B)

The physical leg with three degrees of freedom of AMOS-WD06.(C) Climbing position of a cockroach. It

can bend its trunk downward at the joint between the first (T1) and second (T2) thoracic segment to keep the

legs close to the surface of an object for an optimum climbing position and even to prevent unstable actions

(modified from (3)).(D) Cockroach leg (modified from (4)).

Our walking machine has all in all 20 sensors (see Fig. 1 of the main manuscript text)
for controlling various reactive and adaptive behaviors. The control of this walking ma-
chine is kept on a simple but powerful board, the Multi-Servo IO-Board (MBoard), which
is capable of controlling up to 32 motors, and receiving up to 36 analog sensor inputs;
its size is 125 mm x 42 mm x 15 mm. The MBoard can be interfaced with a personal
computer (PC) or a personal digital assistant (PDA) via a RS232 serial connection at 57.6
kbits/s. Note that for robot experiments we implement the controller on the PDA where
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we are, due to the firmware of the PDA, forced to use an update frequency of the whole
system of 38 Hz (26 ms cycle time). However, this is too fast for the motors. Therefore we
just skip several periods of the neural CPG controller to arrive at a down-sampled signal.
If not for the restrictions imposed by us from this PDA, normally one would just choose
a slow sampling frequency to begin with and then arrive at a 1:1 mapping without having
to perform this skipping procedure. In a natural system with analogue operating neurons
such problems do not exist.

1.2 Processing Network

1.2.1 Overview

The complete processing network consists of the novel controller and some other standard
pre- and post-processing modules needed for signal shaping described in the following. All
pre- and post-processing modules are generic and have been used also in other (e.g., four-
and eight-legged) walking machines (2; 5). Essentially these modules perform filtering,
amplitude modulation and phase-shifting of the control signal to allow for the coordination
of the different legs. Their parameters are non-critical and robustness analyzes can be
found in older studies (2; 5). Furthermore, these modules are abstractions from those
found in real insects (6; 7).

Supplementary Figure 2 shows the detailed setup of sensor-driven neural control con-
sisting of five main modules (neural preprocessing module (pink units, Supplementary
Figure 2A), adaptive neural chaos control module (B, yellow units), neural CPG postpro-
cessing module (C, green units), neural motor control module (D, orange units), and a
delay line circuit for sequencing the motor signals for the different legs (D, blue units). A
coarse view of this is displayed in Fig. 1 of the main manuscript text.

1.2.2 (A): Sensors and Neural Preprocessing Module

All raw sensory data used to provide environmental information for our sensor-driven
robot system are fed into a neural preprocessing module having several subnetworks for
orienting and gait preprocessing (pink units in Supplementary Figure 2A).

Sensors for orienting behavior:We use infra-red (IR1,2,3,4) together with light depen-
dent resistor (LDR1,2) sensor signals to trigger different types of tropisms, e.g., obstacle
avoidance behavior (negative tropism, see Supplementary Video 3) and phototaxis (posi-
tive tropism, see Supplementary Video 3). An upside-down detector sensor signal (UD)
serves to activate a self-protective reflex behavior by inhibiting all motor neurons when
the machine is turned into an upside-down position (Supplementary Video 3).
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Supplementary Figure 2:Sensor-driven neural control. It generates stimulus induced behavior of

AMOS-WD06 by means of adaptive neural chaos control (see text for details). Parameters are A = 1.7246,

B =−2.48285, C =−1.7246. (A) Neural preprocessing module: UDhys = hysteresis neuron of the upside-

down detector sensor signal (unit 1); GRhys = hysteresis neuron of the gyro sensor signal (unit 2); IMhys

= hysteresis neuron of the inclinometer sensor signal (unit3); FChys = six hysteresis neurons of the foot

contact sensor signals (units 4,...,9); IR7,hys = hysteresis neuron of the rear infra-red sensor signal (unit 10);

LDRM,hys = hysteresis neuron of the mean value of the left and right light dependent resistor sensor signals

(unit11); oU121,2 = output neurons andoU123,4 = hidden neurons of the preprocessing unit (unit 12) of the

light dependent resistor sensor signals and the infra-red sensor signals coming from the sensors implemented

at the front part (IR2,3) and at the front legs (IR1,4). Note that only one foot contact sensor signal with its

neural preprocessing (FC) is presented while others, having the same setup, are omitted.(B) Adaptive

neural chaos control module: p = target period;c1,2 = self-adapting signals;x1,2 = output neurons of the

CPG network.(C) Neural CPG postprocessing module: ∆t = time window function; hys1,2 = hysteresis

neurons; Int = integrator units.(D) Neural motor control module: I1,...,5 = neural control parameters for

generating omnidirectional walking behavior;H1,...,14 = interneurons of the PSN;H15,...,28 = interneurons

of the VRNs. Motor neurons: TR1, CR1, FR1 = TC-, CTr- and FTi-motor neurons of the right front leg

(R1); TR2, CR2, FR2 = right middle leg (R2);TR3, CR3, FR3 = right hind leg (R3);TL1, CL1, FL1 =

left front leg (L1); TL2, CL2, FL2 = left middle leg (L2);TL3, CL3, FL3 = left hind leg (L3);BJ = a

backbone motor neuron which is here deactivated; i.e., it stays in a fixed position. All numbers marked with

subscript “B” refer to bias terms. The location of the motor neurons and sensor neurons on the AMOS-

WD06 is presented in Fig. 1 of the main manuscript text. Note that in general the FTi-joints are inhibited;

i.e., they stay in a flexed position. When a leg is losing ground contact the FTi-joint of this leg will be

activated by the chaotic signal.
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Sensors for walking behavior:We use foot contact (FC1,...,6), gyro (GR), inclinome-
ter (IM), light dependent resistor (LDR1,2), and infra-red (IR7) sensor signals to determine
the walking periodp (see below).

Pre-processing:All raw sensory signals require preprocessors to eliminate the sensory
noise as well as for shaping the sensory data. In the application presented here, twelve neu-
ral preprocessing units utilize the dynamic properties of recurrent neural networks. Eleven
neural preprocessing units are built as single hysteresis elements (see ref. (8)). The hys-
teresis principle (2; 8) leads to a nonlinear transition of two output states (low and high
activation). Thus, hysteresis units can effectively filter sensory noise and control the dura-
tion in response to stimuli from the environment. A twelfth unit is derived from a minimal
recurrent controller (MRC) structure (9) which allows balancing positive (LDR) and neg-
ative (IR) tropisms leading to a final resulting turning signal processed to the VRNs. As a
result, the walking machine can effectively perform an appropriate turning angle to avoid
obstacles or corners as well as turn toward a light source. All neural preprocessing param-
eters, e.g., synaptic strengths and bias terms (see Supplementary Figure 2A) were found
by experiments (see (5; 10) for more details of the neural preprocessing parameters).

1.2.3 (B): Adaptive neural chaos control module (CPG)

The pre-processed signals from the sensors for walking behavior are then combined and
the result is fed into the chaotic controller (yellow units in Supplementary Figure 2B)
that performs as the central pattern generator (CPG). As described in the main text of the
manuscript, the parameters of the two-neuron control module are initially adjusted such
that its dynamics is chaotic if uncontrolled. The preprocessed sensory-signals determine
an integer numberp, which is the desired output period of the CPG signal. This is achieved
either via error-minimization in a learning process (see main text as well as Sect. 2 below)
or – as a shortcut – by using a pre-defined sensor-to-period mapping according to Table 1
in the main text. The CPG output becomesp-periodic by using the novel adaptive neural
chaos control method (see also main text) to stabilize originally unstable period orbits that
are embedded in the chaotic attractor of the module. We remark that chaos on the one
hand serves as a ground state of the CPG module, on the other hand it is also functionally
used for self-untrapping.

1.2.4 (C): Neural CPG postprocessing module

The output of both neurons of the controlled CPG is sent to a postprocessing module
(green units in Supplementary Figure 2C). In this postprocessing module, the signals are
smoothed, employing recurrent hysteresis neurons, and integrated in an integrator unit
(Int, see Supplementary Figure 2C).
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Specifically, the neural CPG postprocessing module consists of three hierarchical sub-
units: i) time window function units∆t for setting an appropriate number of iteration steps
which correspond to the cycle for updating the CPG signal, ii) hysteresis unitshys1, 2 for
signal shaping, and iii) signal integrator unitsInt1, 2 to obtain continuous ascending and
descending motor signals. Supplementary Figure 3 shows CPG signals after postprocess-
ing by each unit.
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Supplementary Figure 3:Postprocessing signals for different periods. (A)Output signals of the time

window function unit∆t. (B) Output signals of the hysteresis unithys2. (C) Output signals of the signal

integrator unitInt2.

1.2.5 (D): Neural motor control modules

Subsequently, the post-processed CPG outputs are transmitted to the neural motor control
module (orange and blue units in Supplementary Figure 2D). The orange units describe
one phase switching network (PSN, (5)) and two velocity regulating networks (VRNs,
(2; 5)). The blue units represent delay lines (5).

The PSN is a generic feed-forward network, which reverses the phase of the periodic
signals driving the CTr- and FTi-joints. As a consequence, these periodic signals can be
switched to lead or lag behind each other byπ/2 in phase in accordance with the given
input I3. The PSN has been implemented to allow for sideways walking, e.g., for obstacle
avoidance (see (5) for more details on parameters and specific experiments on sensor-
driven sideways walking).

The two VRNs are also simple feed-forward networks (see (2)). Each VRN controls
the three ipsilateral TC-joints on one side. Because the VRNs behave qualitatively like a

8



multiplication function (2), they have capability to increase or decrease the amplitude of
the periodic signals by the magnitude of the inputsI4,5. Consequently, the walking velocity
of the machine will be regulated, i.e., the higher the amplitude of the signal the faster it
walks (not shown in the current set of experiments but see (2)). Furthermore they can
be used to achieve more walking directions, like forward and backward movement (sign
inversion of the multiplication) or turning left or right where the directions are driven by
the preprocessed infra-red and light dependent resistor sensor signals throughI4,5.

At the blue delay line units, delaysτL between the output of the motor control module
and the rear left leg joints are used. These delays are independent of the target period
or other influences. The described setup leads to biologically motivated leg coordination
since the legs on each side perform phase shifted waves of the same frequency (11). The
ipsilateral lag is determined byτ and the phase shift between both sides is given byτL.
The frequency of the waves is defined by the target period of the chaos control network.

2 Performance of the AMOS-WD06 system:
Additional Experiments and Videos

Here several more walking experiments are presented that complement those shown in the
main manuscript text.

Basic, predefined behaviors:As mentioned, learning as well as pre-wiring (using
Table 1 from the main manuscript text) can be used to determine the different behaviors of
our hexapod. The following aspects are shown using a pre-defined mapping:

1. Examples of different gaits (Supplementary Video 1 and Supplementary Figure 4).
This shows in a clear and separated way the different gaits which can appear (inter-
mixed) during walking in complex terrain.

2. Autonomous selection of different gaits and other complex behaviors achieved by
sensor-driven triggering of different pre-defined target periods without learning (Sup-
plementary Video 2 and Supplementary Figure 4, see also Fig. 3 of the main
manuscript text). Gyro (GR) and inclinometer (IM) signals lead to faster or slower
gaits depending on the slope. Foothold search using chaotic motion triggered by a
lack of ground contact. Phototaxis is induced by the LDR-sensor signal being larger
than a predefined threshold. This selects target periodp = 4 leading to a fast tripod
gait. Resting behavior (target periodp = 1) is triggered by a too strong light at LDR.

3. Positive photo-tropism and negative tropism away from an obstacle (Supplemen-
tary Video 3, see also Supplementary Video 2). Motor signals of these asymmetric
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behaviors, indicative of the actions of the PSN and VRN networks, are shown in
Supplementary Figure 5).

4. Escape behavior, triggered by the infra-red rear sensor and leading to target period
p = 4, a fast tripod gait (simulated predator attack, Supplementary Video 3).

5. Protective reflex triggered by the upside-down detector (UD) is also shown in Sup-
plementary Video 3.

6. Detailed rendering of a foothold-searching experiment (Supplementary Video 4 and
Supplementary Figure 6). This shows how chaos can actually be exploited in a
behavioral context for untrapping, where periodic foothold search (no chaos) will
not succeed.

Learned behaviors: One of the main aspects of this work is to show that the cen-
tralization of control via our novel adaptive CPG leads to the unique situation that the
learning of a sensor-motor mapping becomes exceedingly simple, because it is channelled
only through this controller not having to involve any other network structures. To support
this notion several different learning experiments have been performed, some of which are
shown here:

1. Learning to select an energy saving gait (Supplementary Video 5 and Fig. 4 in
the main manuscript text). This experiment is described in detail in the main text.
The robot uses the energy uptake as an error signal for the learning of the mapping
between terrain inclination and gait-type.

2. Learning to escape danger from behind. In this experiment the robot learns to select
a fast gait from a "danger from behind" error signal (Supplementary Video 6 and
Supplementary Figure 7). We use an auditory-wind detector sensor (AW) (12) and
a rear infra-red sensor (IR7) for detecting distant sounds at AW (made by an ap-
proaching predator) and too near, hence potentially dangerous, approaching objects
at IR from behind. The learning mechanism is similar to the one described in the
main manuscript text (see Fig. 4 of the main manuscript text) where the IR signal is
used to generate an error signale while the sound signal is the sensory signal which
provides the appropriate to-be-learned correlation. Before learning the robot selects
the fast gait only in response to the (too-near) IR-signal. After learning, it selects
it already when "hearing" the approaching predator this way triggering an earlier
escape reaction.
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Tripod gait (p = 4)

0 1 2 3 4 5 6 7 8 9 10

Tetrapod gait (p = 5)
0 1 2 3 4 5 6 7 8 9 10

Mixed tetrapod-wave or transition gait (p = 6)
0 1 2 3 4 5 6 7 8 9 10

Wave gait (p = 8,9)
0 1 2 3 4 5 6 7 8 9 10

Supplementary Figure 4:Sketch of different walking patterns according to target periodsp. A blue
colored leg is in the air, a white leg is on the ground. To keep the images concise, only very coarse schemes
are shown that do not take into account the different timings of swing and stance phases.
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Supplementary Figure 5:Obstacle avoidance using orienting responses.The TC-joint signals of all
six legs. At first, the walking machine avoids obstacles on its left by turning to the right and it returns to
forwards walking as soon as obstacles are not any longer detected (at around timet = 40s ). At around
t = 65s, there are obstacles on its right. As a result, it turns left. For right turning, the inversion of the
right TC-signals is clearly visible. Hence, the right legs perform a forward stance and backward swing
phase which results in a right turn. For the left turn, the motor signals of the left legs appear perturbed
and the inversion is not so clearly visible. This results from short time intervals during which the sensors
do not detect obstacles and the walking machine tries to walk straight. Nevertheless, it performs the left
turn successfully. Such inversions of the motor signals can be also observed when the machine performs
phototaxis.
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0s 1.8 s

10.1 s8.8 s5.4 s

3.5 s

0 s 2.3 s 5.1 s

13.8 s11.5 s7.6 s

Supplementary Figure 6:Two examples of sensor-driven foothold searching using chaos. (A)Leg
R3 in a small hole (first hole in Fig. 3 of the main manuscript text).(B) Leg R3 in a big hole (second hole
in Fig. 3 of the main manuscript text). In both cases, the walking machine can perform self-untrapping in
about 10-14 s. Time is shown in the lower left corner of each photo. Note that the self-untrapping is a result
of an omnidirectional search pattern, i.e., for-, back-, up-, down-, and also sideways movement including the
amplitude amplification of leg motion.
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learns [(2),(3),(4)] choosing the fast gait (tripod gait,p = 4) in order to speedily walk away from the too-
near object (escaping danger). This leads to a drop of the infra-red signal, which is used to calculate the
error signal (4) for learning. As soon as it is far enough from the object the robot then returns to its normal
wave gait [(5),(7)]. In this process the correlation between AW and IR signals is being learned. Thus, in the
second experiment presenting the sound (6) leads directly to the selection of the fast tripod gait requiring no
further learning. The selection of periodp from the output of learner neuronv follows a randomly chosen
(!) mappingv ↔ p shown by the dashed grid lines. Other periods (e.g.,p = 1, 8), which were not selected,
are not depicted. Learning will, regardless of this mapping, always select the "zero-error gait" (here the
tripod gait). Evaluation of the speed of each gait is calculated by means of the derivative of motor signals.
Symbols: m = motor signal of a TC-joint, v = output of a learner neuron,∗ = detecting the sound source.
Color code: yellow = normal forward walking situation with a slow wave gait, red = detecting low frequency
sound (300 Hz) from behind, green = detecting the sound and a close object (sound source, SS) from behind.
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Supplemental video legends:

Supplementary Video 1:Examples of five different gaits. Slow wave gait (p = 9), fast wave gait

(p = 8), mixed tetrapod-wave or transition gait (p = 6), tetrapod gait (p = 5), and tripod gait (p = 4).

Supplementary Video 2:Autonomous walking behaviors in different environmental conditions. A

complex sequence of eight different behaviors is shown that include standard walking in a tetrapod gait, up-

slope walking in a wave gait, rough-terrain walking in a wave gait, self-untrapping through chaotic motion,

down-slope walking in a mixture or transition gait (from wave to tetrapod), active phototaxis by fast walking

in a tripod gait, and resting. As soon as obstacles are detected the machine performs obstacle avoidance

behavior by turning left/right.

Supplementary Video 3:Sensor-driven behavioral patterns. In the first scenario, the walking machine

tries to escape from the attack of a manually controlled robot by increasing its walking speed by means of

changing its gait from a wave gait to a tripod gait. In the second scenario, the walking machine shows ori-

enting responses by avoiding obstacles and performing phototaxis. Note that in this scenario it is set to walk

with only one gait type (tripod gait) in order to see the orienting behavior more clearly. Furthermore, here

we show that stopping the machine in front of a light source during phototaxis can be achieved by inhibiting

only all TC-joints. As a result, it performs “marching” in front of the light source. In the last scenario,

the walking machine performs a self-protective reflex by standing upside-down when it is turned into an

abnormal walking position and it immediately returns to walk again as soon as it is turned back to its normal

walking position.

Supplementary Video 4:Foothold searching experiment with and without chaos. When applying

chaos, the walking machine successfully performs self-untrapping if its foot gets stuck in a hole but without

chaos it fails.

Supplementary Video 5:Learning to optimize energy consumption during walking on a steep slope.

The walking machine learns to search for an energy saving gait (i.e., slow wave gait) while walking on a

steep slope.

Supplementary Video 6:Learning to escape danger from behind. The walking machine learns to

search for a fast gait (i.e., tripod gait) in order to escape danger from behind. Here the low frequency sound
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and the reflex infra-red signal are thought to represent danger signals. They are detected by the auditory-

wind detector sensor (AW) and the rear infra-red sensor (IR).
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