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1 Motivation

Recently, an integrative view of neural circuits and mechan-
ical components has been developed by neuroscientists and
biomechanicians [11, 8]. This view argues that mechanical
components cannot be isolated from neural circuits in the
context of substantially perturbed locomotion. Note that me-
chanical passive walkers with no neural circuits only show
stable locomotion on flat terrain or small slopes [2]. The
argument of the integrative view has been supported by a
cockroach experiment, which has demonstrated that more
modulations of neural activities are detected when cock-
roaches run over a highly complex terrain with larger ob-
stacles (more than three times cockroach hip height). Nor-
mally, cockroaches are able to solely rely on passive me-
chanical properties for rapid stabilization while confronted
with moderate obstacles (less than three times cockroach
hip height) [10]. In addition, neural circuits and leg mus-
cle activities tend to be entrained by mechanical feedback
[11, 12, 14]. Besides, it is well known that neural activities
modulate muscle impedance such as stiffness and damping
[7, 9, 15], such modulations can be utilized for stabilization
in posture and locomotion [3].

Based on these findings, we propose an adaptive neurome-
chanical model with active muscle impedance modulations
by external feedback, which can directly vary over neural
activities. This model can effectively modulate the stiff-
ness and damping parameters of a pair of virtual agonist-
antagonist muscles. At the same time, it can generate ap-
propriate muscle activities entrained by external feedback.
Besides, it also enables the robot to produce variably com-
pliant motions. Note that “virtual” here means motions of
joints imitate muscle properties without any physical pas-
sive mechanisms such as springs.

2 State of the Art

There are a great number of neuromechanical models that
have been developed. Most of them have been presented
using simulations; e.g., salamander locomotion [6], human
locomotion [4] and single leg control [13]. However, few
researches clarify active muscle impedance modulation by
neural activities in the context of real robot locomotion. In
fact, the interplay between neural circuits, muscle mecha-

nisms is substantial in legged locomotion, in particular in
gait adaptation and energy efficient locomotion [5].

3 Adaptive Neuromechanical Model

The adaptive neuromechanical model has a set of distributed
and nested loops consisting of a minimal neural circuit and
virtual muscle mechanisms as well as mechanical compo-
nents (see Fig. 1). The neural circuit is a minimal central
pattern generator (CPG) including only two neurons with
full connectivity. The circuit handles the inter-leg and intra-
leg coordination of locomotion. The different gaits can be
easily generated by only one parameter of the CPG. The
CPG activates joints, where some of them are driven by vir-
tual muscle mechanisms. Through the external feedback,
joints cannot only produce adaptive and compliant motions
with actively tuned virtual muscle impedance, namely the
stiffness and damping. Besides, they can also yield mus-
cle activity entrainment varying over different walking gaits.
Here, external feedback originates from interactions be-
tween mechanical components and the environment.

Figure 1: Adaptive Neuromechanical Model Implemented on
AMOSII. (a) Neural CPG circuit controlling all ThC-
and CTr-joints. The synaptic weights W11,22 of the
CPG circuit are set to 1.4 while others W12,21 are reg-
ulated by a parameter g. This way, it generates vari-
ous periodic outputs leading to different gaits. (b) The
mechanical leg of the hexapod AMOS II consisting of
three joints (ThC-, CTr- and FTi- joints, see Fig. 2 for
the complete AMOSII). (c) Virtual muscle mechanism
generating variably compliant motions of FTi joints.
The mechanism is activated by a contact force signal
Fext .

The adaptive neuromechanical model has been implemented



on AMOSII (Advanced MObility Sensor driven-walking de-
vice, see Figs. 2 and 1). This robot mimics the structures of
walking animals, i.e. a cockroach.
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Figure 2: (a) The six-legged walking machine AMOSII inspired
by the morphology of the American cockroach, which
has a foot contact sensor FC(1,...,6) for each leg. (b)
Each leg has three joints including ThC, CTr and FTi.

The real robotic implementation allows us to (i) demonstrate
that our adaptive neuromechanical model can generate dif-
ferent gaits by a changing parameter of g in a minimal CPG
(see Fig. 3 (a)), (ii) present variably compliant FTi joint mo-
tions by a pair of modulated parameters (K,D) (see Fig. 3
(b)),

Figure 3: CPG and Muscle Outputs. (a) The periodic output
signals of CPG with different values of the parameter
g (e.g., 0.09 and 0.27). (b) A pair of virtual agonist-
antagonist muscles is activated by a contact force sig-
nal Fext . The virtual muscles can produce variably
compliant motions observed through FTi joint motions,
where the parameter set is given as, e.g., Setup 1
(K = 15,D = 0.6); Setup 2 (K = 45,D = 0.6); Setup 3
(K = 15,D = 0.01).

(iii) show mutual entrainment between FTi joint motions
driven by virtual muscles and a contact force signal Fext of

the mechanical system (see Fig. 4(b)), (iv) show that the vir-
tual muscles can still yield robust motions even though con-
tact foot sensing fails during locomotion (i.e., Fext is zero,
see s in Fig. 4(b)). In this situation, the angular frequency
of muscle signals can still follow a previous frequency (i.e.,
w≈ 39rad/s, see s in Fig. 4(a)), and (v) illustrate a nonlinear
adaptation method for effectively adjusting virtual muscle
impedance at different speeds or gaits (see Fig. 4). Note that
the virtual muscle impedance here encompasses the stiffness
and damping (see Figs. 4(c) and (d)).

Figure 4: Virtual Muscle Impedance Modulations. Virtual mus-
cle Impedances are actively modulated by parameters
[K,D]. There modulations can be achieved by the en-
trainment between FTi joint motions driven by virtual
muscles and a contact force signal Fext with different
angular frequencies ω1,2,3. (a) The angular frequency
adaptation of muscle signals. (b) The entrainment be-
tween muscle(solid green) and Fext (dashed blue) sig-
nals. (c) The damping parameter of muscles D (d)
The stiffness parameter of muscles K. Where The
angular frequency of Fext set is: ω1 = 6π(rad/s) ≈
18.85(rad/s), ω2 = 12π(rad/s) ≈ 37.70(rad/s). ω3
means (Fext = 0), but virtual muscles can still produce
usable signals(see the s). With angular frequencies of
Fext (ω1 and ω2), virtual muscle frequencies converge
to ω ≈ 20(rad/s) and ω ≈ 39(rad/s) respectively. Af-
ter frequency adaptations, virtual muscles are entrained
with the contact force signal Fext , see e1 and e2.
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5 Discussion Outline

Why do virtual muscle mechanisms still work when contact
foot sensing fails during legged locomotion?

This is because the nonlinear adaptation algorithm is used
for mutual entrainment between virtual muscle mechanisms



and external feedback. After mutual entrainment, the virtual
muscles mechanisms can still generate usable motor com-
mands even though there is no contact foot sensing any more
(see Fig. 4). This property enables robots to yield more ro-
bust and efficient locomotion over environment. Memory
recalling is an alternative way for rebuilding external sens-
ing.

Why do you choose mutual entrainment to modulate muscle
impedance?

Mutual entrainment between controllers (e.g., CPG circuits
and virtual muscle mechanisms) and mechanical compo-
nents can produce adaptive compliant motions over natural
environment leading to optimal energy consumption. Be-
sides, recent physiological experiments have shown that the
leg muscle activities in animal locomotion are actively en-
trained by sensory feedback, which directly varies with CPG
activities [1].
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