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Abstract— In chaos control, an originally chaotic system is
modified so that periodic dynamics arise. One application of
this is to use the periodic dynamics of a single chaotic system
as walking patterns in legged robots. In our previous work we
applied such a controlled chaotic system as a central pattern
generator (CPG) to generate different gait patterns of our
hexapod robot AMOSII. However, if one or more legs break,
its control fails. Specifically, in the scenario presented here,
its movement permanently deviates from a desired trajectory.
This is in contrast to the movement of real insects as they
can compensate for body damages, for instance, by adjusting
the remaining legs’ frequency. To achieve this for our hexapod
robot, we extend the system from one chaotic system serving as
a single CPG to multiple chaotic systems, performing as mul-
tiple CPGs. Without damage, the chaotic systems synchronize
and their dynamics is identical (similar to a single CPG). With
damage, they can lose synchronization leading to independent
dynamics. In both simulations and real experiments, we can
tune the oscillation frequency of every CPG manually so
that the controller can indeed compensate for leg damage. In
comparison to the trajectory of the robot controlled by only a
single CPG, the trajectory produced by multiple chaotic CPG
controllers resembles the original trajectory by far better. Thus,
multiple chaotic systems that synchronize for normal behavior
but can stay desynchronized in other circumstances are an
effective way to control complex behaviors where, for instance,
different body parts have to do independent movements like
after leg damage.

I. INTRODUCTION

Legged locomotion has properties such as movement
agility and adaptability to uneven terrains that are difficult to
achieve with wheeled and tracked locomotion. Most of the
species in the terrestrial world employ legged locomotion.
However, bio-inspired legged robots still can up to now not
mimic all the advantages of real walking animals.

In recent years, research on the neural basis of walking and
its application to robot control has become more and more
popular. It was found that leg movements are dominated
by a series of central oscillation originating from the spinal
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cord (vertebrate) or ganglions (invertebrate), so called central
pattern generators (CPGs) [1]. This mechanism has been
applied to different types of legged robots, such as the
bipedal robot designed by Taga et al. [2], the quadruped
robot Tekken by Kimura et al. [3], the hexapod robots in
our previous works [4][5]. Bio-inspired amphibious robots
proposed by Ijspeert et al. [6] also employ this kind of control
strategy. More details on CPG-based locomotion control can
be seen in [7].

Although the previous CPG-based algorithms generate
sophisticated gait patterns and can even deal with the ir-
regularities of terrain to some extent, the problem of leg
damage was to our knowledge not fully addressed in CPG-
based control. The difficulty arises as the main controller
usually contains CPGs which always control all legs with
the same frequency [8]. In contrast, insects can adjust the
frequency of each leg individually [9]. If one leg is broken,
insects can still achieve locomotion through changing the
oscillation frequency of legs independently.

Traditional methods to compensate for leg damage are
complicated [10]. The robot has to detect which leg is bro-
ken, then replan the gait pattern and choose another proper
foot contact point. With this, the trajectory is calculated once
again using inverse kinematics. For different legs, different
trajectories have to be calculated. Hence, all situations have
to be considered and the procedure uses many computational
resources.

In contrast, we develop a neural-based control strategy to
not only generate multiple gaits but also to deal with leg
damage. For this, we use multiple CPG modules inspired by
the 3-CPGs model proposed by Daun-Gruhn et al. [11][12].
We extend our previously proposed chaotic CPG controller to
three CPGs, which include one master-CPG and two client-
CPGs. The three CPGs are related to the three pairs of
legs respectively and can be regarded as the pro-, meso-
and meta-thoracic ganglion. The structure of the master-CPG
follows our previous model [4] which can generate different
gaits such as slow wave gait, fast wave gait, tetrapod gait,
transition gait and tripod gait. It can also generate chaotic
leg motion in order to overcome irregularities in terrain and
to get out of some traps. The two client-CPGs are slightly
different from the master CPG since a synchronization and
desynchronization mechanism is added. If the two client-
CPGs synchronize to the master CPG, the neural outputs are
the same for all CPGs. If they are desynchronized, they can
oscillate with different frequencies. Thus, supposing some
legs are broken, other legs can independently change their



oscillation frequency and can compensate for the leg damage.
This paper is organized as follows. First, we introduce

the walking machine platform - AMOSII, which is inspired
by real insects. Second, we present the control algorithm
where the chaotic CPG is briefly addressed since it has been
discussed in detail in our previous works. After that, we
show how the central oscillation is extended to three CPGs
and also state how the three CPGs can be synchronized and
desynchronized. Third, we demonstrate the performance of
the model on simulations and real robot experiments. Finally,
a conclusion is given.

II. THE WALKING MACHINE PLATFORM AMOSII

In order to test our algorithm in a physical system, the six-
legged walking machine AMOSII is employed (see Fig. 1).
It has identical leg structure with three linkages (coxa,
femur, and tibia, see Fig. 2). Each leg has three joints: the
thoraco-coxal (TC-) joint enables forward (+) and backward
(−) movements, the coxa-trochanteral (CTr-) joint enables
elevation (+) and depression (−) of the leg, and the femur-
tibia (FTi-) joint enables extension (+) and flexion (−) of
tibia. Comparing to a real insect [1], the tarsus is ignored
in the current design. Nevertheless, a spring is installed in
the leg to substitute part of the function of the tarsus; i.e.,
absorbing the impact force during touchdown on the ground.
In addition, passive coupling is installed at each joint (see
Fig. 2) in order to yield passive compliance and to protect
the motor shaft. The body consists of two parts: two front
legs belong to the front part and the middle and hind legs
belong to the hind part.The two body parts are connected by
an active backbone joint which enables the rotation around
the lateral or transverse axis. This backbone joint is mainly
used for climbing which is not the main focus here (but see
[13]). All leg joints as well as its backbone joint are driven
by digital servo motors.
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Fig. 1. Biologically inspired walking machine platform AMOSII.

The robot has six infrared sensors (IR1,...,6) at its legs, six
force sensors (FC1,...,6) in its tibiae, three light dependent
resistor sensors (LDR1,2,3) arranged in a triangle shape on
the front body part, and two ultrasonic sensors (US1,2) at
the front body part (see Fig. 1). The force sensors are for
recording and analyzing the walking patterns. The infrared

sensors are used for detecting obstacles near the legs while
the ultrasonic sensors are used for detecting obstacles in
front. The light dependent resistor sensors serve to generate
positive tropism like phototaxis. We use a Multi-Servo IO-
Board (MBoard) installed inside the body to digitize all
sensory input signals and generate a pulse-width-modulated
signal to control servomotor position. The MBoard can be
connected to a personal digital assistant (PDA) or a personal
computer (PC) via an RS232 interface. For the robot walking
experiments, here, the MBoard is connected to a PC on which
the neural controller is implemented.
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Fig. 2. Leg structure of AMOSII inspired by a cockroach leg.

III. MULTIPLE CHAOTIC CENTRAL PATTERN
GENERATORS AND THEIR SYNCHRONIZATION

In this section, we introduce the main controller of the
hexapod robot, which is a CPG-based locomotion controller.
First, we briefly introduce a single chaotic CPG presented
in our previous work [4]. Second, we show how the single
CPG is extended into multiple CPGs, e.g., three CPGs.
The three CPGs generate either different periodic patterns
(i.e., different frequencies) independently, or they become
synchronized and generate the same pattern. Here, they
will be synchronized for basic locomotion generation and
desynchronized for leg damage compensation shown in the
Experiments and Results section.

A. Single Chaotic CPG

The chaos control CPG unit is shown in Fig. 3. Orig-
inally, the two neurons have self-connections as well as
their mutual connections (w11,w12,w21,w22) [5]. They also
oscillate spontaneously and generate a series of waves. In
order to enable complex behavior of the hexapod robot (e.g.,
chaotic leg motion for self untrapping [4]), we modify the
CPG structure by removing the self-connection of the second
neuron). Using appropriate parameters (w11 =−22.0,w12 =
5.9,w21 = −6.6,w22 = 0.0,θ1 = −3.4,θ2 = 3.8), the CPG
now exhibits chaotic dynamics.To achieve different walking
patterns, we simultaneously add inputs to the two neurons,
i.e., the control signals c1 and c2, which act as extra biases
that depend only on the period P of the walking cycle.
With an increase of P, the robot walks slower. The output
of the neurons is detected every P steps and the chaos is
controlled to P-period orbit through adjusting the control



input. The discrete time dynamics of the activity (output)
states xi(t) ∈ [0,1] of the circuit satisfies

xi(t +1) = σ(θi +
2

∑
j=1

wi jx j(t)+ c(p)
i (t)) for i ∈ {1,2} (1)

where σ(x) = (1+exp(−x))−1 is a sigmoid activation func-
tion with biases θi. wi j is synaptic weight from neuron j to
i.
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Fig. 3. Single CPG with the chaos controller. x1 and x2 indicate the
neurons that generate the oscillation, while c1 and c2 are the control inputs
depending only on the period P with a control strength µ . w11,w12,w21
represent the synaptic weights and θ1 and θ2 mean the biases.

For a given period P, the control input

c(p)
i (t) = µ

(p)(t)
2

∑
j=1

wi j∆ j(t) (2)

is calculated every P time steps while the other steps are set
to 0. In Eq. 2, ∆ j(t) indicates the activity difference between
the current step and P-steps before:

∆ j(t) = x j(t)− x j(t− p) (3)

and µ(p)(t) means the control strength, which changes its
value adaptively according to

µ
(p)(t +1) = µ

(p)(t)+λ
∆2

1(t)+∆2
2(t)

p
(4)

with an adaption rate λ , e.g. 0.05.
Thus, using this single chaotic CPG different gait patterns

can be easily obtained just by changing the P value. Periods
9, 8, 6, 5, 4 correspond to slow wave gait, fast wave gait,
transition gait, tetrapod gait and tripod gait, respectively (see
Fig. 4). A blue area means that this leg is in a support phase,
i.e., touches the ground, while a white area indicates the
swing phase. The red columns in panel (1) show the different
walking speeds when the robot moves with different gaits.

Another useful function of this algorithm is the chaotic
output. If we set the control signal c(p)

i (t) ≡ 0, the neural
CPG circuit shows chaotic dynamics, which can be applied
for self-untrapping, e.g., when a leg falls into a hole. Usually,
the output signals of the CPG are transferred to the leg joints
after passing through additional neural circuits (i.e., a CPG
post processing network, velocity regulating networks, and a
phase switching network, not shown here but see [4][5] for
more details). This neural control can also enable the robot
to perform omnidirectional walking.
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Fig. 4. Different gaits for changing P and the corresponding velocity
(reproduced from [4]).

B. Multiple Chaotic CPGs and Synchronization Mechanism

Supposing one or more legs are broken, the robot cannot
use the same gait to stay on the original trajectory. In
contrast, real insects can control their locomotion to continue
with their trajectory even though some legs are broken. Legs
then show different frequencies to maintain the body balance
and compensate for leg damage.

Thus, we extend the single CPG network to three CPGs.
The control structure is shown in Fig. 5. Each pair of legs is
controlled by one CPG (yellow). In blue we depict the motor
neurons, whose output can be directly applied to the joints.
Green lines represent the spreading direction of the signals.

The first CPG is called master and the other two CPGs
are called client. The two client-CPGs can synchronize to
the master to keep pace with the oscillation frequency. When
synchronized, the controller generates the same outputs as if
there is only one chaos control CPG. When the legs are for
example broken, the three CPGs can lose synchronization
and oscillate with different frequencies.
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Fig. 5. Multiple chaotic CPGs of AMOSII. Three yellow ellipses represent
the three CPGs. Blue circles are motor neurons. Red lines indicate the
synchronization mechanism. Green lines indicate the directions of control
signals spreading. For simplicity, the CPG post processing networks, the
velocity regulating networks, and the phase switching networks are not
depicted here but see [4][5].

The inner structure of the master CPG is like a normal
chaos control CPG as shown in Fig. 3. However, the inner
structure of the client CPGs is different. We add a synchro-
nization mechanism to the CPG circuit as shown in Fig. 6.



When the client CPG needs to synchronize to the master
CPG, the M-neuron becomes active (i.e., 1.0) shunting the
synaptic weight from the inputs (c1,c2). Thus, the outputs
of the network are uncontrolled. Then, the output from the
master CPG (X1master, see Fig. 6) that was inhibited before
is passed to the client due to disinhibition. So the output of
the client-CPG can oscillate at the same frequency as the
master CPG. When the client CPG needs to oscillate at its
own frequency, the M-neuron becomes inactive (i.e., 0.0)
switching off the inhibition and cutting down the connection
from the master CPG. As a consequence, the two client CPGs
are controlled by their control inputs (c1 and c2).
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Fig. 6. Details of the client CPG. It is similar to the master CPG except for
the synchronization mechanism, i.e. the M-neuron which enables the signal
from the master CPG.

The following formulas describe the details of the client
CPG. The outputs of the two neurons satisfy

x1(t +1) = σ(a1(t))+α(x1master−σ(a1(t)))
x2(t +1) = σ(a2(t))

(5)

where, the activity satisfies

ai(t) = θi +
2

∑
j=1

wi jx j(t)+ c(p)
i (t) (6)

and α is the synchronization parameter. It is set to 1.0 if the
M-neuron is active and 0.0 if it is inactive. The output of x1
for synchrony and asynchrony is shown in Fig.7.

Although, in this paper, we implement three CPGs. This
framework is general such that it can be easily extended to
six CPGs (each leg one CPG) or 18 CPGs (each joint one
CPG) for future research.

IV. EXPERIMENTS AND RESULTS

A. Simulation

We used LPZROBOTS1 as simulation software. To sim-
ulate the legs’ damage, we fixed the movement of the CTr-
joints of the Left-middle (LM), Right-front (RF) and Right-
hind (RH) legs, i.e., the CR1, CR3 and CL2 joints, as shown
in Fig. 8(a) and in Fig. 9. By doing so, these three legs could
now only support the body but they could not lift up. The
period of the master CPG was set to 8 and the two client

1It is based on the Open Dynamics Engine (ODE). For more de-
tails of the LPZROBOTS simulator, see http://robot.informatik.
uni-leipzig.de/software/.
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Fig. 7. The outputs of the CPG network for synchrony (a) and asynchrony
(b). The master CPG has period 4; the client CPG has period 5.

CPGs were set to synchronize to the master. In this situation,
the robot could not follow the former trajectory, a straight
line, but turned right (see Fig. 10(d)).
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Fig. 8. This figure shows the broken legs in our two experiments. Red
crosses indicate the broken joints. In the simulation and in experiment I,
we fixed the LM, RF and RH legs. In experiment II, we fixed the LM and
RH legs.

The reason is that the body does not any more obtain
the same propelling force from each side: two legs on the
left side but only one on the right side. Thus, we increased
the driving frequency of CPG2 to period 5 (see Fig. 9(b))
while CPG3 remained synchronized to the master (see Fig.
9(a) and 9(c)). As a consequence, the RM leg can supply
more propelling force. Normally every leg should perform
like Fig. 9(c). However, the CR1, CR3 and CL2 joints were
fixed, such that they performed like shown in Fig. 9(a). The
oscillation frequency of the RM leg was increased, which is
plotted in Fig. 9(b).

We tested four different periods in the simulation envi-
ronment and the trajectory of the hexapod’s movement is
shown in Fig. 10. When the CPG2 was set to period 4, the
robot performed a left turning curve. Period 5 was suitable
for maintaining the straight-line walking of the robot. When
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Fig. 10. Robot walking trajectories when leg R2 was set to different periods. Leg R2 was set to period 4, 5, 6 and 8, respectively.

CPG2 was set to period 6, the robot still turned right. When
it was set to synchronize with the master CPG (i.e., period
8), the right turning curve was even sharper.

B. Real Robot Experiment I

We also tested our leg damage scenario with our walking
platform AMOSII (see Fig. 11). The setup was the same as
for the simulation, i.e., the RF, RH, LM legs were fixed, as
shown in Fig. 8(a). We used a straight white tape on the
ground to compare the trajectory with a straight line (cf.
Fig 10). The walking distance was set to 200 cm and we
measured deviation in lateral direction after the distance.

The recorded data is plotted in Fig. 12. First, all CPGs
had period 8 (S1, red) and because RF, RH and LM legs
were broken, the robot did not arrive at the destination (cf.
Fig. 11(a)). Next, CPG2 was set to period 5 (S2, blue), so
that the RM leg moved with a higher frequency. Note that,
CPG3 was still synchronized to the master. As a result, the
robot walked straighter and reached the destination, however,
with a deviation (cf. Fig. 11(b)). The blue bar (S2) depicts
the average deviation for 5 trials. For comparison, the green
bar (S3) shows the average deviation for 5 trials when
all legs were functional. Because the mechanical structure

fail

(a) Fail to reach destination.

200 cm

deviation

(b) Arrive with a deviation.

Fig. 11. Screenshot of the experiment . (a) The robot failed to reach the
endline. (b) The robot arrived at the destination with a lateral deviation.

is not perfectly symmetrical, there is also some deviation
in the lateral direction. The experimental video can be
seen at http://www.manoonpong.com/IROS2012/
supple_video.wmv

The reason that there are differences between simulation
and the real experiment is the friction condition and the me-
chanical asymmetry. Even with no legs broken, the trajectory
was not a straight line. Note that we are currently working on
modelling the friction condition and mechanical asymmetry
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in the simulation to reduce the differences.

C. Real Robot Experiment II

We conducted another experiment to show the generality
of this algorithm. In this experiment, all of the three CPGs
were set to period 4 in order to generate a tripod gait.
Then, we fixed the RH and LM legs (see Fig. 8(b)). As a
consequence, the walking trajectory showed a left turning
curve. This is because the middle legs serve a different
function compared with the hind legs. To let the robot walk
straight again, we made the three CPGs desynchronized and
changed the period of them to 5, 4, 6, i.e., front legs in period
5, middle legs in period 4 and hind legs in period 6. The
results are shown in Fig. 13. As can be seen, although the
trajectory was still deviating from its original straight line
(S2, blue), it was much better than if all the legs were in
period 4 (S1, red). We also show the deviation when all legs
were functional (S3, green). The experimental videos can be
seen at http://www.manoonpong.com/IROS2012/
supple_video.wmv
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Fig. 13. Experiment II results: deviation in lateral direction. S1: We fixed
RH and LM leg and all legs used period 4. Deviations in five tests were
100, 110, 100, 107 and 90 (cm). S2: The three CPGs had period 5, 4 and
6, respectively. Deviations in five tests were 40, 36, 40, 25 and 30 (cm).
S3: Tripod gait with no leg broken. Deviations: 2, 5, 7, 0 and 4 (cm). The
number above the bar is the mean value of the deviations for 5 trials.

V. CONCLUSION

In this paper, we focused on the neural locomotion control
of a hexapod, which is a continuation of our previous
investigation. The central oscillator is extended from one

CPG to three CPGs, each of which controls a pair of opposite
legs. Our experimental results show that one CPG might not
be enough to maintain the body balance and compensate for
leg damage. Here, we show that using more than one CPG
provides a simple mechanism to cope with this problem.

However, the current 3 CPGs controller can only deal
with some specific situations as shown here and the period
parameter was manually tuned. Thus, our future plan is to
further investigate by extending the controller to 6 or 18
chaos control CPGs with leg loading mechanisms [14][15] as
the natural counterparts [9]. This will allow us to obtain more
flexible adaptation, ensure statical stability, and attenuate the
curve walking behavior in case of leg damage. In addition,
we will employ a learning mechanism such that the robot
could find an appropriate period automatically.
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