
Evolving Systems preprint manuscript No.
(will be inserted by the editor)

Information dynamics based self-adaptive reservoir for
delay temporal memory tasks

Original article: http://link.springer.com/article/10.1007/s12530-013-9080-y

Sakyasingha Dasgupta · Florentin Wörgötter · Poramate Manoonpong

Received: date / Accepted: date

Abstract Recurrent neural networks of the reservoir

computing (RC) type have been found useful in various

time-series processing tasks with inherent non-linearity

and requirements of variable temporal memory. Specif-

ically for delayed response tasks involving the transient

memorization of information (temporal memory), self-

adaptation in RC is crucial for generalization to varying

delays. In this work using information theory, we com-

bine a generalized intrinsic plasticity rule with a local

information dynamics based schema of reservoir neu-

ron leak adaptation. This allows the RC network to be

optimized in a self-adaptive manner with minimal pa-

rameter tuning. Local active information storage, mea-

sured as the degree of influence of previous activity on

the next time step activity of a neuron, is used to mod-

ify its leak-rate. This results in RC network with non-

uniform leak rate which depends on the time scales of

the incoming input. Intrinsic plasticity (IP) is aimed at

maximizing the mutual information between each neu-

ron’s input and output while maintaining a mean level

of activity (homeostasis). Experimental results on two

standard benchmark tasks confirm the extended per-

formance of this system as compared to the static RC

(fixed leak and no IP) and RC with only IP. In addi-

tion, using both a simulated wheeled robot and a more

complex physical hexapod robot, we demonstrate the

ability of the system to achieve long temporal memory

Sakyasingha Dasgupta (B) · Florentin Wörgötter · Poramate
Manoonpong
Bernstein Center for Computational Neuroscience (BCCN),
Department of Computational Neuroscience,
University of Göttingen,
Friedrich-hund Platz 1, D-37077 Göttingen, Germany
E-mail: (s.dasgupta, worgott, poramate)@physik3.gwdg.de

for solving a basic T-shaped maze navigation task with

varying delay time scale.

Keywords recurrent neural networks · self-adaptation ·
information theory · intrinsic plasticity · delayed mem-

ory

1 Introduction

Reservoir computing (RC) is a powerful paradigm for

the design, analysis and training of recurrent neural net-

works (Lukosevicius and Jaeger 2009). The RC frame-

work has been utilized for mathematical modeling of

biological neural networks (Maass et al. 2004) as well

as applications for non-linear time-series modeling (Shi

and Han 2007), robotic applications and understanding
the dynamics of memory in large recurrent networks in

general (Büsing et al. 2010). Traditionally the reservoir

is randomly constructed with only the output connec-

tions trained with a regression function. Although both

spiking and analog neurons have been explored previ-

ously, here we focus on the Echo-state network (ESN)

type (Jaeger and Hass 2004) using sigmoid leaky inte-

grator neurons.

Even though the generic RC shows impressive perfor-

mance for many tasks, the fixed random connections

and variations in parameters like spectral radius, leak-

rate and number of neurons can lead to significant vari-

ations in performance. Approaches based on Intrinsic

Plasticity (IP) (Schrauwen et al. 2008) can help to im-

prove such generic reservoirs. IP uses an information

theoretic approach for information maximization at an

individual neuron level in a self-organized manner. The

IP performance significantly depends on the type of

transfer function, degree of sparsity required and the

use of different probability distributions. However the

http://link.springer.com/article/10.1007/s12530-013-9080-y

2 Sakyasingha Dasgupta et al.

conventional IP method is still outperformed by spe-

cific network connectivities like permutation matrices,

in terms of the memory capacity performance (Boedecker

et al. 2009).

Here we overcome this, by first utilizing a new IP method

(Li 2011) based on a Weibull distribution for informa-

tion maximization. This is then combined with an adap-

tation rule for the individual neuron leak-rate based

on the local information storage measure (Lizier et al.

2011), (Lizier et al. 2012). Transfer entropy is another

measure for such an adaptation rule. However conven-

tionally this is more difficult to compute, and as it also

maximizes input to output information transfer, it is

difficult to combine with an IP rule. We achieve such a

combination in a self-organized way to guide the indi-

vidual neurons for both, maximizing their information

content and their local memory based on the incom-

ing input signal. Subsequently through two standard

benchmark tasks and the robot maze navigation tasks,

we show that our adapted network has better perfor-

mance and memory capacity as compared to static and

only IP adapted reservoirs. All the tested scenarios in-

volve a high degree of non-linearity and requirement

of adaptable temporal memory. Specifically in robotics

and engineering control tasks with nonlinear dynamics

and variational inputs (in the time domain), our adap-

tation technique can show significant performance.

This article is organized as follows. Section 2 describes

the self-adaptive reservoir framework together with the

network dynamics and the two adaptation rules, namely

intrinsic plasticity and the local information storage

based leak adaptation. Section 3 presents the experi-

mental setup and analysis. Section 4 presents the ex-

perimental results and illustrates the performance of

our network for standard benchmark tests (NARMA-

30 1 and delayed 3-bit parity) and for the maze naviga-

tion task for both simulation and real robot scenarios.

Section 5 discusses the presented framework in general

along with biological relevance of our network in terms

of timing mechanisms in the brain and memory guided

behaviors. This is followed by the conclusion in Section

6.

2 Self-Adaptive Reservoir Framework

In this section we present the description of the inter-

nal reservoir network dynamics and introduce (i) neu-

ron local memory adaptation based on active informa-

tion storage measure and (ii) the self-organized adapta-

tion of reservoir neurons inspired by intrinsic plasticity.

1 NARMA-30 is the 30th order non-linear auto-regressive
moving average

win

w
w

in

sys

out

Input Output
Dynamic Reservoir

Wback

Neuron

Synaptic input Neuronal output

with Intrinsic plasticity

Leak

fixed connections

trained connections

Fig. 1 The Reservoir network architecture, showing the flow
of information from input to reservoir to output units. Typi-
cally only the output connections Wout are trained. The input
connections Win and internal connections Wsys are set ran-
domly. Feedback conections Wback from the output to the
reservoir neurons if provided, are typically also set randomly.
The highlighted section shows a zoomed in view of a single
reservoir neuron. (only a subset of the reservoir neurons de-
picted for the purpose of illustration)

These are carried out as unsupervised rules as part of

the pre-training phase of the reservoir network. Sub-

sequently, we combine both mechanisms for a compre-

hensive adaptive framework.

2.1 Network Description

The recurrent neural network (RNN) model based on

the reservoir computing framework is depicted in Fig. 1.

To a certain extend the model could be considered as an

abstract representation of the mammalian neo-cortex.
The basic framework can be divided into three layers:

input, hidden (or internal) and output layers. The in-

ternal layer has a large recurrent neural network that

is driven by temporal signals. These driving signals are

provided by the input layer. Due to the dynamic reser-

voir, the network exhibits a wide repertoire of nonlinear

activity. This is then combined into desired output sig-

nals at the output layer, using a suitable supervised

training of the reservoir neuron to output connectivity.

The firing activity of the dynamic reservoir at discrete

time t is described by the internal state activation vec-

tor x(t). Each neuron is connected to itself or other

neurons via weighted synaptic connections. Specifically

Win are the K×N connections from the K input neu-

rons to the N reservoir neurons, Wout are the N × L
connections from the reservoir neurons to the L output

neurons and Wsys represents the N×N dynamic reser-

voir recurrent connections.

The recurrent neural activity within the dynamic reser-

voir varies as a function of it’s previous activity and the

Information dynamics based self-adaptive reservoir for delay temporal memory tasks 3

current driving input signal. As such, the discrete time

state dynamics of reservoir neurons is given as:

x(t+ 1) = (I−Λ)θ(t) + Λ(Wsysθ(t)) + Winv(t), (1)

y(t) = Woutθ(t), (2)

λi =
1

Tc

(1

1 + ρi

)
, (3)

where x(t) = (x1(t), x2(t), .., xN (t))T is the N di-

mensional vector of dynamic reservoir state activation,

v(t) = (v1(t), v2(t), .., vK(t))T is the K dimensional

time dependent input that drives this recurrent network

and y(t) = (y1(t), y2(t), .., yL(t))T is the L dimensional

vector of output neurons. Each reservoir neuron has

its own leak-decay rate λi where Λ = (λ1, λ2, .., λN)T

is the collection of these individual leak decay rates.

These leak values are inversely proportional to a leak

control parameter, ρi ∈ {0, 1, 2,, 9} and modulated

by a global time constant Tc > 0. Most models use

an uniform leak-rate or manually adjust this to a fixed

value. However here they are determined by the local

active information storage based adaptation rule (Sec-

tion 2.3). The firing rate of each reservoir neuron is

given by the vector θ = (θ1, θ2,, θN)T , where

θi(t) = tanh(aixi(t) + bi). (4)

Here bi acts as the individual neuron bias value, while

ai governs the slope of the firing rate curve. We adapt

these parameters according to a stochastic learning rule

based on a generalized intrinsic plasticity mechanism,

presented in Section 2.2.

The output weights Wout (equation (2)) can be

computed as the linear regression weights of the teacher

outputs d(t) on the reservoir states x(t). The basic ob-

jective of such supervised training is to find a set of

output weights such that the summed squared error be-

tween the desired output and the actual network output

y(t) is minimized by changing the weights incremen-

tally in the direction of the error gradient. One way

to do this is by calculating the output weights Wout

using the collection of the desired output states D,

and the pseudo-inverse of the matrix S collecting the

states of the reservoir over a number of time steps as

Wout = S+D (off-line training). We use an alternative

approach (online training) with no internal reservoir

states being collected. Using the recursive least squared

algorithm (RLS) (Jaeger 2003), we adapt the output

weights at each time step. While the training inputs

v(t) are being fed into the dynamic reservoir. We imple-

ment the RLS algorithm using a fixed forgetting factor

(λRLS < 1). However as demonstrated in (Paleologu et

al. 2008), it is possible to use an adaptive forgetting

factor with an additional error change detection mod-

ule.

RLS algorithm for self-adaptive reservoir training:

Initialize: Wout = 0, exponential forgetting factor (λRLS)

is set to a value close to 1 and the auto-correlation ma-

trix ρ is initialized as ρ(0) = I/δ, where I is unit matrix

and δ is a small constant.

Repeat: At time step t

Step 1: For each input signal v(t), the reservoir state

x(t) and network output y(t) are calculated using Eq.

1 and Eq. 2.

Step 2: Training error e(t) calculated as:

e(t)← d(t)−Wout(t− 1)θ(t)

Step 3: Gain vector K(t) is updated as:

K(t)← ρ(t−1)θ(t)
λRLS+θT (t)ρ(t−1)θ(t)

Step 4: Update the auto-correlation matrix ρ(t)

ρ(t)← 1
λRLS

[
ρ(t− 1)−K(t)θT (t)ρ(t− 1)

]
Step 5: Update the instantaneous output weights Wout(t)

Wout(t)←Wout(t− 1) +K(t)e(t)

Step 6: t← t+ 1

Until: Maximum number of time steps is reached

In order to further eleborate the working of the on-

line RLS learning, we take the example of a Sine wave

transformation function inspired from (Jaeger 2003).

Starting with a moderate network size of N = 50 reser-

voir neurons, the inner network connections (Wsys)

were scaled to a spectral radius of 0.95 and the RLS

learning rate was fixed at λRLS = 0.998. For the auto-

correlation matrix initialization, we set δ = 10−5. All

other network parameters were fixed equal to the ones

used by the remaining experiments (Section 3.1). The

input to the network is a sinosoidal signal of the form

v(t) = sin(π2 +5π) (see green line Fig. 2(a)). Post train-

ing the network learns the output weights from the in-

ner reservoir neurons to a single output neuron, such

that it can produce a transformed sinosoidal signal of

the form d(t) = 1
2sin

9(π2) (see blue line in Fig. 2(a)). In

order to make the system robust to perturbations, white

noise with zero mean and standard deviation 0.001 was

added to all the reservoir neurons. This setup was run

for a total of 3000 time steps with the first 50 time

4 Sakyasingha Dasgupta et al.

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

4

5

Time steps

O
u

tp
u

t
W

ei
g

h
ts

0 50 100 150 200 250 300 350 400 450 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time steps

Input

Target

Output

(a)

(b)

Fig. 2 (a) Graph of the input signal sin(π
2

+ 5π) (green) plotted against the desired target signal 1
2
sin9(π

2
) (blue) and the

actual learned output (red) from the reservoir network. (b) The RLS algorithm learnt weight convergence of four randomnly
selected reservoir neurons.

steps used as washout period, with the RLS learning

switched off. After this, the RLS learning was switched

on for the next 500 time steps. The network was then

allowed to generate the desired output signal with the

learnt output weights Wout. The task is easily learned

by the reservoir in the first 500 time steps as observed

in Fig. 2(a). Here the first 500 time steps were used for

teacher forcing with RLS output weight learning. Af-

ter this period, learning was stopped and the learned

weights were used to generate the desired output signal.

We randomly select four reservoir neurons in order to

display the convergence of the learned output weights.

From Fig. 2(b) it is observed that after the first 500 time

steps the output weights converge resulting in the net-

work generating the desired transformation along with

the incoming input signal, without further teacher forc-

ing.

2.2 Generic Intrinsic Plasticity

Homeostatic regulation by way of intrinsic plasticity

(IP) is viewed as a mechanism for the biological neuron

to modify its firing activity to match the input stimulus

distribution (Turrigiano et al. 1994);(Desai et al. 1999).

In (Triesch 2007) a model of intrinsic plasticity based on

changes to the neuronal non-linear activation function

was introduced. A gradient rule for direct minimization

of the Kullback-Leibler divergence between the neu-

Information dynamics based self-adaptive reservoir for delay temporal memory tasks 5

ronal current firing-rate distribution and maximum en-

tropy (fixed mean) exponential output distribution was

presented. Subsequently in (Schrauwen et al. 2008) an

IP rule for the hyperbolic tangent transfer function with

a Gaussian output distribution (fixed variance maxi-

mum entropy distribution) was derived. During testing

the adapted reservoir dynamics, it was observed that

for tasks requiring linear responses (e.g NARMA) the

Gaussian distribution performs best. However on non-

linear tasks, the exponential distribution gave a bet-

ter performance. In this work, with the aim to obtain

sparser output codes with increased signal to noise ratio

for a stable temporal memory task, we implement the

learning rule for IP using a Weibull output distribution

as the target distribution.

The Weibull distribution (equation (7)) is a two pa-

rameter continuous distribution where its shape param-

eter (α) can be tweaked to generate a wide family of

other popularly used probability distributions. As such

with appropriate parameter choice, it can account for

various shapes of the neuron transfer function (equa-

tion (4)). With the aim for a high kurtosis number

(sparser output codes) and generalization to different

neuron activation functions, we choose the shape pa-

rameter α = 3.5. This model was very recently intro-

duced in (Li 2011). However, the application of this

rule in the reservoir computing framework and its ef-

fect on the network performance for standard bench-

mark tasks had not been studied so far. Furthermore,

in contrast to the original model, we extend this for the

tan-hyperbolic (tanh) neuronal nonlinearity.

The probability distribution of the two-parameter

Weibull random variable θ is given as follows:

fweib(θ;β, α) =

{ α
β (θβ)α−1exp− (θβ)α if θ ≥ 0

0 if θ < 0
(5)

The parameters α > 0 and β > 0 control the shape

and scale of the distribution respectively. Between α =

1 and α = 2, the Weibull distribution interpolates be-

tween the exponential distribution and the Rayleigh

distribution. Specifically for α = 5, we obtain an almost

normal distribution. Due to this generalization capabil-

ity it serves best to model the actual firing rate distribu-

tion and also account for different types of neuron non-

linearities. The neuron firing rate parameters a and b of

equation (4) are calculated by minimizing the Kullbeck-

Leibler divergence between the real output distribution

fθ and the desired distribution fweib with a fixed mean

firing rate β = 0.3. Here the Kullbeck-Leibler diver-

gence is given by:

DKL(fθ, fweib) =
∫
fθ(θ)log

(
fθ(θ)

fweib(θ)

)
dθ

= −H(θ) + 1
βαE(θα)− (α− 1)E(log(θ))− log(α

βα)

(6)

where, fθ(θ) = fx(x)/ ∂θ∂x . This is for a single neuron

with input x and output θ. H(θ) =
∫
fθ(θ)logfθ(θ)dθ

is the entropy and E represents the expectation values.

Differentiating DKL with respect to a and b (see

Appendix A for details) we get the resulting online

stochastic gradient descent rule for calculating a and

b with the learning rate η at each time step as:

∆b = −η
[
2θ + θ−1(1− θ2)

(α
βα

θα − α+ 1
)]
. (7)

∆a =
η

a
+ x∆b (8)

In general this type of intrinsic plasticity tries to op-

timize the neuronal information content with respect to

the incoming input signal. By contrast, the neural local

memory adaptation rule (Section 2.3) tries to modulate

the neuronal leakage. This is based on a quantification

of the extent of influence that the past activity of a

neuron has on it’s activity in the next time step (im-

mediate future). Therefore we combine IP learning with

the neuron memory adaptation rule in series, such that

the leakage adaptation is carried out after the intrin-
sic adaptation of the neuron non-linearity. This com-

bination leads to a single self-adaptive framework that

controls the local memory of each neuron based on the

incoming input to the network, while preventing run-

way dynamics (homeostasis).

2.3 Neuron Memory Adaptation : Information Storage

In case of neurons with a certain degree of leakage

(applied after the non-linearity) as introduced first in

(Jaeger et al. 2007) for the leaky echo-state networks

variant of reservoirs, the leakage rate λ (see Fig. 1) de-

termines how much a single neuron depends on the ac-

tual net input it receives, as compared to the influence

of its own previous activity. Since λ varies between 0

and 1, 1 − λ can be viewed as a local neuron memory

term.The lower the value of λ, the stronger the influence

of the previous level of activation as compared to the

actual current input to the neuron. Hence if λ = 1, the

6 Sakyasingha Dasgupta et al.

0 2 4 6 8 10 12 14 16 18

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

K values

A
c

ti
v

e
 i

n
fo

r
m

a
ti

o
n

 s
to

r
a

g
e

t+1tt-1t-k+1

TimeSemi-infinite
past

Immediate
future

x x´

(a) (b)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

K = 1

K
 =

 4

10

20

30

40

50

60

70

80

90

100
(c)

Fig. 3 (a) Pictorial representation of active information storage (AIS) calculated for a single neuron state x and its immediate
future state x′ (solid circle: present and next time step states of the neuron; dotted circle: previous states of the same neuron).
(b) Active information storage convergence: plot of estimated AIS versus the history length k. (c) Plot of the change in local
active information storage values (unaveraged) for 100 neurons with baseline history length k = 1 versus k = 4. Here, a
concentration of points in the upper left corner of the graph, clearly depicts higher local AIS values for increasing k value, as
compared to the baseline estimate. Typically some neurons capture much higher information storage values as compared to
others, due to their difference in activation (Colormap represents the different neurons (1 to 100).

neuron’s previous activation has no effect on its present

behavior or in other words the neuron has zero internal

memory.

In order to account for an adjustable neuronal leak

rate as a model of the leak in cellular membranes that

works in conjunction with the IP rule, we use the lo-

cal active information storage measure at each inter-

nal neuronal state. Active information storage (see Fig.

3(a)) introduced by (Lizier et al. 2012) refers to the

amount of information in the previous state of the neu-

ron that is relevant in predicting its immediate future

state. It measures the amount of information stored

in the current state of the neuron, that provides ei-

ther positive or negative information towards its next
state. Specically, the instantaneous information stor-

age for a variable x is the local (or un-averaged) mu-

tual information between its semi-infinite past x
(k)
t =

{xt−k+1, ..., xt−1, xt} and its next state xt+1 at the time

step t+1 calculated for finite-k estimations. Hence, the

local information storage is defined for every spatio-

temporal point within the network (dynamic reservoir).

The local unaveraged information storage can take both

positive as well as negative values, while the active (av-

erage) information storage Ax(k) =
〈
ax(i, t, k)

〉
t

is al-

ways positive and bounded by the average information

capacity of a single neuron state. Interestingly another

information theoretic quantity, namely excess entropy,

also provides a measure of the stored information. How-

ever it estimates the stored information which will be

used at some arbitrary point in the future and not nec-

essarily be the next time step t+1 (Lizier et al. 2011). It

is due to this reason the local active information storage

serves as a more suitable measure of the neuron local

memory.

The local information storage for an internal neuron

state xi is given by:

ax(i, t+ 1) = lim
k→∞

log2

(
P (x

(k)
i,t , xi,t+1)

P (x
(k)
i,t)P (xi,t+1)

)
, (9)

where ax(i, t+1, k) represents finite-k estimates and

Ax = limk→∞ log2Ax(k). k = 1 is the natural starting

choice for calculations of the estimates. However with

increasing values of k →∞, the estimates tend towards

the actual active information storage value, with a satu-

ration point reached for a certain finite k-value. Beyond

this point with an increase in k there is no significant

change in the finite-estimate of the information stor-

age quantity (see Figs. 3(b) and (c)). Using epochs(φ)

with finite history length k = 8, the active information

storage measure at each neuron adapts the leak control

parameter αi as follows :

ρi =

{
ρi + 1 if Ax(i, φ)−Ax(i, φ− 1) > ε

ρi − 1 if Ax(i, φ)−Ax(i, φ− 1) < ε,
(10)

where ε = 1
4 log2N and 0 < αi < 9 .

After each epoch, ρi and λi (equation (3)) are ad-

justed and these values are used for the subsequent

epoch. Once all training samples are exhausted, the pre-

training of the reservoir is completed and λi is fixed.

The information storage measure was implemented us-

ing the Java based information dynamics toolkit2. The

toolkit was used as a wrapper class with Matlab.

2 Joseph T. Lizier, ”JIDT: An information-theoretic toolkit
for studying the dynamics of complex systems”, 2012,
https://code.google.com/p/information-dynamics-toolkit/

Information dynamics based self-adaptive reservoir for delay temporal memory tasks 7

Note that it can be observed from equation (1) that

the reservoir time-scale is controlled by the leak(Λ)

matrix. Thus, the adaptation of the individual leak-

rates can be observed as the tuning of neuronal time-

constants. Since this is governed by the change in infor-

mation storage of each neuron based on the incoming

input, the reservoir speeds up or slows down its dynam-

ics depending on the timescales of input signal.

3 Experimental Setup and Analysis

The performance of our self-adaptive reservoir network

on delay temporal memory tasks is evaluated first by

testing it on two benchmark tests, namely the NARMA-

30 time series modeling task, and a delayed 3-bit parity

task. These have been used as standard for compari-

son of memory performance by the reservoir computing

community. By taking the inherent non-linearity and

the requirements for a extended temporal memory into

account, both of these are complex signal processing

tasks. In the second part of our experiments we use a

classic delay temporal memory scenario of robot navi-

gation through a T-shaped maze. This is evaluated for

a simple simulated wheeled robot as well as a complex

physical walking machine AMOS II. By generalizing

between both small and long mazes, this task clearly

demonstrates the potential application of our network

for solving real robotic tasks with variable delay period

between memory storage and retrieval.

3.1 Experimental Setup

In all experiments here, the internal reservoir weights

Wsys were drawn from an uniform distribution over [-

1,1] and were subsequently scaled to a spectral radius

of 1.2 (note that, intrinsic plasticity allows a spectral

radius greater than unity and hence the reservoir net-

work contains a wide spread distribution of neural sig-

nals). Input weights and output feedback weights (if

provided) can be randomly generated in general. Here

they were drawn from an uniform distribution over [-

0.5,0.5]. The firing rate parameters were initialized as

a = 1 and b = 0. The learning rate for the stochas-

tic gradient descent algorithm was fixed at η = 0.0008.

Weibull IP and individual neuron leak adaptation were

carried out in 10 epochs of 1000 time steps, in order

to determine the optimal parameters ai, bi and λi for

each neuron. Performance evaluation was done after the

neuron leak and transfer function parameters had been

fixed. For all the standard benchmark tests the inter-

nal reservoir network was constructed using N = 200

leaky integrator neurons initialized with a 10% sparse

connectivity.

3.1.1 Dynamic System Modeling with 30th Order

NARMA:

The dynamics of the nth order non-linear auto-regressive

moving average is given by:

z(t+ 1) = 0.2z(t) + 0.004z(t)

n−1∑
i=0

z(t− i)+

1.5v(t− (n− 1))v(t) + 0.001

(11)

Here n = 30 for the 30th order modeling scenario

and z(t) is the output of the system at time ’t’. v(t) acts

as the input to the system at time ’t’, and is uniformly

drawn from the interval [0,0.5]. The task is to output

z(t) based on v(t). In general this task is quite complex

considering that the current system output depends on

both the current time step input as well as its own

previous n− 1 time steps history. Consequently, we use

feedback connections (Wback) from the output neurons

to the internal neurons with equation (1) and equation

(2) modified to:

x(t+ 1) = (I−Λ)θ(t) + Λ(Wsysθ(t))+

Winv(t) + Wbacky(t)
(12)

y(t+ 1) = Wout[θ(t),y(t)] (13)

The main goal of the NARMA task is to evaluate

the ability of the reservoir to model a highly non-linear

system where the system state depends on the incoming
input as well as its own history. Due to this inherent de-

pendence on its own previous history this task requires

extended temporal memory with increasing complexity

for higher orders of the system. The training, validation

and testing were carried out using 1000, 2000 and 3000

time steps respectively. Five fold cross-validation was

used with the training set. Here the first 50 steps were

used to warm up the reservoir and were not considered

for the training error measure. The network setup con-

sisted of a single input neuron, feeding the input v(t)

to the reservoir network and just one output neuron.

We evaluated the network performance in this task us-

ing the normalized root mean squared error between

the desired signal d(t) and the actual network output

signal y(t):

NRMSE =

(〈
(d(t)− y(t))2

〉〈
(d(t)−

〈
y(t)

〉
)2
〉) 1

2

(14)

8 Sakyasingha Dasgupta et al.

3.1.2 Delayed n-bit Parity Task:

The delayed n-bit parity task functions over input se-

quences t time steps long, and determines for n bits, if

τ+n→ τ time steps in the past are active. Here τ repre-

sents the delay period. The input consists of a temporal

signal v(t) drawn uniformly from the interval [-0.5,0.5].

Using n = 3 bits, the desired output signal is calculated

as the PARITY check (v(t−τ)⊕v(t−τ−1)⊕v(t−τ−2)

for increasing time delays of 0 ≤ τ ≤ 400. Since the par-

ity function (XOR) is not linearly separable, this task

is quite complex and requires the ability to recall long

spans of memory. The network setup consisted of a sin-

gle input neuron, the internal reservoir network with

200 neurons and 400 output units. We evaluated the

memory capacity of the network as the amount of vari-

ance of the delayed input signal recoverable from the

optimally trained output units summed over all delays.

This measure was first introduced by (Jaeger 2001).

For a given input signal delayed by k time steps, the

net memory capacity is given by:

MC =
∑
k

MCk =
∑
k

cov2(y(t− k), d(t))

var(y(t))var(d(t))
(15)

where cov and var denote covariance and variance oper-

ations, and as before y(t) and d(t) represent the desired

and actual output signals.

3.1.3 Robot T-maze Navigation:

In order to demonstrate the temporal memory capac-

ity of our system, we employ a variable delay tem-

poral memory task of navigation through a T-shaped

maze. The experiments are carried out first in simu-

lation using a simple wheeled robot NIMM4 (Fig. 5)

and then finally with a more complex physical walking

robot AMOS-II (Fig. 4). In case of the simulation task

a reservoir size of N = 200 neurons was used, while the

reservoir size for the real robot experiment was consid-

erably larger with N = 500 neurons. This was fixed,

keeping in mind the extended delay memory required

for the T-maze in the real robot experiments. However,

in both cases the reservoir has 10% sparse connectivity.

The simulated robotic task was performed using 6 in-

put neurons (number of sensors) and 2 output neurons

(number of actuators). In case of the real robot exper-

iment, we use 4 input neurons and 2 output neurons

with the reservoir network (see Fig. 7).

The primary objective of this task is to let the robots

move from the starting position until the end of the

maze while making the correct turn at a recall zone (see

Figs. 6(a),(b) and 7(c)). While walking along the corri-

dor, the robot receives a cue signal (a bright light acti-

vation in case of AMOS-II or the presence of a spherical

object in case of simulation) either to their left or right

side. This provides information to the robots regard-

ing the required turning behavior at the T-junction.

On reaching the end of the corridor the robots should

make the correct turn depending on this previously ap-

plied cue signal.

In order to demonstrate the generalization capability of

the system to longer time delays, we divided the task

into two mazes (see Fig. 6(a)) of different lengths. Maze

B requires a longer temporal memory (larger delay be-

tween cue and recall) as compared to maze A. Further-

more, in case of the simulated wheeled robot, we had a

more controlled environment with a much smaller delay

timescale (seconds) while in the hexapod robot, the ac-

tual maze is considerably big with larger delay timescale

(minutes). Here the robot has to learn both the reac-

tive behavioral task of turning at the T-junction as well

as remembering the cue signal shown much before, to

negotiate the correct turn. As such conventional meth-

ods, like landmarks to identify the T-junction, are not

needed.

Complex physical walking robot AMOS II : AMOS

II (successor to AMOS robot (Steingrube et al. 2010)) is

a biologically inspired hardware platform (Fig. 4) hav-

ing six identical legs similar to an insect. Each leg has

three joints. The morphology of these multi-jointed legs

is modeled on the basis of a cockroach leg but with the

tarsus segments ignored. The body of AMOS II consists

of two segments: a front segment where two forelegs

are installed and a central body segment where the two

middle and the two hind legs are attached. They are

connected by one active backbone joint inspired by the

invertebrate morphology of the American cockroach’s

trunk. This backbone joint is for up- and downward

bending, which allows it to climb over obstacles. All leg

joints including the backbone joint are driven by digital

servomotors.

The size of AMOS II is 30 cm wide, 40 cm long, 22

cm high. The weight of the fully equipped robot (includ-

ing 19 servomotors, all electronic components, sensors,

and a mobile processor) is approximately 4.5 kg. AMOS

II has a total of 17 sensors. For the maze-navigation ex-

periments we only make use of the two light dependent

resistor sensors (LDR1,2) on the left and right sides of

the front body part, and the front two ultrasonic sen-

sors (US1,2). These act as the sensory inputs to the

reservoir network for the T-maze navigation task. We

use a Multi-Servo IO-Board (MBoard) installed inside

Information dynamics based self-adaptive reservoir for delay temporal memory tasks 9

US1

US2

LDR

LDR
1

LDR2

PDA

Backbone joint

(a) (b)

Fig. 4 (a) Biologically inspired six-legged walking machine
AMOS II. (b) Leg structure of AMOS II inspired from a cock-
roach leg (showing the three different leg joints).

Fig. 5 Model of the simulated wheeled robot NIMM4
showing the sensors (LIR,RIR,LIRR,RIRR) and actuators
(U0,U1). The red ball in front of the robot represents its
goal.

the body to digitize all sensory input signals and to gen-

erate a pulse-width-modulated signal to control servo-

motor position. The MBoard is connected to a personal

computer (PC) via an RS232 interface. Electrical power

supply is provided by batteries: one 11.1 V lithium poly-

mer 2,200 mAh for all servomotors, two 7.4 V lithium

polymer for the electronic board (MBoard) and for all

sensors. For more information of AMOSII, please refer

to (Ren et al. 2012);(Manoonpong et al. 2013).

The expriment consisted of 3 parts. In the first part

dataset aquisition was done using human controlled

navigation of AMOS II through the maze and the sen-

sor and steering signal (see Figs. 7(a),(b)) readings were

recorded. 20 runs with different starting positions for

both, left and right turn cues were carried out. This

was done for both, small and long time delays, between

cue and recall zone. This data was then used for the

training of the reservoir network. Finally online testing

was carried out with the trained steering singnals being

fed into the AMOS II controller.

Simulated wheeled robot NIMM4: The simulation

robot NIMM4 consists of four infrared sensors (LIR,

LIRR, RIR, RIRR), a relative distance sensor (D), a

relative angle of deviation sensor (A) and four actua-

tors to control the desired turning and speed. The ex-

periment consists of data-set acquisition, training of our

adapted RC and off-line testing. During the first phase

using the simulator, we manually controlled the robot

movement through the maze using simple keyboard in-

structions and recorded the sensor and actuator val-

ues. We recorded 80 examples in total with different

initial starting positions. 40% of these were used for

training and 60% for testing purposes. After the first

phase, the self-adapted RC was trained using imita-

tion learning on the collected data with the actuator

values from manual control as desired output. Finally

we performed off-line testing using the remaining set of

recorded data. Simulations were carried out using the

C++ based LPZRobot simulator.3

Table 1 Normalized root mean squared error (NRMSE) and
average memory capacity performance for the NARMA-30
and 3-bit parity tasks, comparing the basic RC (ESN) model,
the RC model with a intrinsic plasticity method using Gaus-
sian probability density and our self-adapted RC (SRC) net-
work using Weibull probability density (optimal values in ital-
ics).

Dataset Measure RC(ESN) IP(GAUSS) SRC
NARMA-30 NRMSE 0.484 0.453 0.362

Std. Dev. 0.043 0.067 0.037
3-bit Parity MC 30.362 32.271 47.173

Std. Dev. 1.793 1.282 1.831

4 Results

In Table 1. we summarize the standard benchmark tests

results of our self-adaptive reservoir network in com-

parison to the performance obtained by a static RC

and RC with only Gaussian distribution based intrinsic

plasticity (Schrauwen et al. 2008). All the parameters

for the compared RC’s were set to their critical val-

ues, such that they operated at their optimal regime

of performance (Bertschinger and Natschläger 2004).

Our network clearly outperforms the other two net-

works, both in terms of lowest normalized root mean

squared error (0.362) for the 30th order NARMA task,

as well as an extended average memory capacity of

47.173 for the delayed 3-bit parity task. Non-normal

3 It is based on the Open Dynamics Engine(ODE). More
details of the LPZRobot simulator can be found at http:

//robot.informatik.uni-leipzig.de/software/.

http://robot.informatik.uni-leipzig.de/software/
http://robot.informatik.uni-leipzig.de/software/

10 Sakyasingha Dasgupta et al.

networks (e.g. a simple delay line network) have been

shown to theoretically allow extensive memory (Gan-

guli et al. 2008) which is arguably not possible for ar-

bitrary recurrent networks. However our self-adaptive

RC network shows considerable increase in the mem-

ory capacity (with 400 reservoir neurons), which was

previously shown to improve only in case of specifically

selected network connections (permutation matrices as

internal network weight configurations) (Boedecker et

al. 2009).

We further test the delay memory capability of the

self-adapted reservoir with the robot maze navigation

tasks. In Fig. 6(a) we show screenshots of the simulated

robot performing the maze navigation task and success-

fully making the correct turn at the T-junction for both

long (left image) and short (right image) mazes. The

turn depends on the prior input appearing while driving

along the corridor. The robot NIMM4 can have differ-

ent speeds while moving through the maze. In general

the robot has a faster speed in the corridor and a com-

paratively slower speed while negotiating turns. Our

network with the leak adaptation method can easily

deal with this situation and as such successfully learns

this task. It only uses the sensor data to drive along

the corridor and outputs the desired actuator values to

move along the correct trajectory while turning at the

T-junction.

The off-line testing results in the form of the percentage

of correct turns from the total test set for both mazes

are shown in Fig. 6(c). In case of the shorter maze A

(smaller delay between cue and recall) we achieve aver-

age performance of 92.25% (±2.88 standard deviation).

A good generalization capability for the longer maze B

is also observed with the average performance of 78.75%

(±3.11 standard deviation), both for right turn. This is

quite high as compared to previous results obtained by

(Antonelo et al. 2008) for a similar task with a static

Echo-state network. Furthermore in Fig. 6(b) one can

see that the adapted reservoir network clearly outper-

forms a static RC for the same task by a margin greater

than 10%. Here we compare the two reservoirs based on

the performance only for the longer maze B, as this re-

quired a much larger delay memory capacity. The over-

all performance can be further enhanced if additional

sensors were available to the robot, owing to the avail-

ability of additional information and more inputs to the

reservoir network.

In comparison to the simulated task the maze nav-

igation scenario with the physical robot AMOS II is

more complex in terms of the much larger time scale of

delay memory required. In simulation the largest maze

B required a maximum of 50 time steps delay (time

scale in seconds) between the cue and the recall, while

the experiments with AMOS II had a three times larger

delay of 1500 time steps (time scale x100 milliseconds)

between cue and recall (Fig. 7(a)). Furthermore while

the simulated task was performed in a controlled envi-

ronment with the network tested off-line, the real robot

experiments are carried out in an online setup. Note

that AMOSII locomotion is driven by modular neural

control (see (Steingrube et al. 2010) for more details).

Here the reservoir outputs are used to steer the robot

by using the modular neural controller. In Fig. 7(a) we

plot the sensor signals, that act as the input to the

reservoir. The onset of LDR1 triggers the left turn cue,

while the simultaneous onset of both the front ultra-

sonic sensors US1,2 signals at the recall zone. A high

dimensional convolution of these signals reverberate as

neural traces inside the reservoir network (a subset of

these diverse set of signals is plotted in Fig. 8(b)).

The local active information storage (Fig. 8(a)) for indi-

vidual neurons shows that the two events of cue and re-

call are recognized as high information content regions

(500 time step and 1500 time step) while the neurons

have a low local AIS value during the remaining time

steps. This leads to the modulation of neuronal leak,

with most neurons having a low leak (high local mem-

ory) at the time of left turn cue and then again at the

end of the corridor (Fig. 7(c)) when recall signals get

triggered. During the remaining time steps, the reser-

voir neurons have a higher leak-rate (low local mem-

ory). As the individual neuron leak-rates act as their

local timescales and collectively control the timescale of

the reservoir. This mechanism leads to a slowing down

of the reservoir dynamics at high information content

regions (cue and recall) and speeding up during the rest

of the time. Using online learning, the reservoir network

successfully learns the correct turning behavior. In this

case due to the previously applied left turn cue, only

the left steering signal is active while the right steering

signal remains inactive and the robot makes a left turn.

It is important that the robot starts turning at the cor-

rect time in order to prevent an early turn or crashing

into the wall at the end of the corridor. This is clearly

achieved as seen from the near perfect coincidence be-

tween the desired and actual outputs (Fig. 7(b))4.

The reservoir outputs are post-processed to get rid of

signal noise before being feed into the modular neural

controller of the robot. Averaging over 20 runs for both

left and right turn scenarios, we achieved a performance

of 80.23%, for which the robot was able to successfully

4 The real robot experiment showing the cue signal activa-
tion and the corresponding turning behavior is demonstrated
in a video clip at http://manoonpong.com/STM/AMOSII_stm.wmv

http://manoonpong.com/STM/AMOSII_stm.wmv

Information dynamics based self-adaptive reservoir for delay temporal memory tasks 11

20

30

40

50

60

70

80

90

Maze B

 Static Reservoir Self-adapted Reservoir
50

60

70

80

90

100

P
E

R
F

O
R

M
A

N
C

E
 %

Maze A

Maze B

 LEFT RIGHT LEFT RIGHT
P

E
R

F
O

R
M

A
N

C
E

 %

(a) (b) (c)

Fig. 6 (a) Screenshots of the robot successfully navigating through the long maze B (left) and the short maze A (right). Yellow
ball is cue to turn right at the T junction, Red ball marks its goal. Note that, here long and short maze are considered in terms
of the delay time between cue and the recall zone. (b) Performance on the large maze B simulation task after 80 trials for
static reservoir vs our self-adapted reservoir. Our network outperforms by 10%. (c) Performance of the robot in the simulation
task with the two mazes (Maze A shorter than Maze B) measured in terms of the percentage of correct times the robot took
the proper trajectory (Left/right turn at the T-junction) to reach the end point. 5% noise is considered on all sensors.

make the correct turn. In all cases the output signals

were perfectly reconstructed. This performance was sig-

nificantly higher as compared to a static reservoir net-

work, which succeeded in making the correct turn on

62.54% of cases. Without leak adaptation, in case of

the static reservoir AMOS II showed a wall following

behavior with turning being triggered much too early

or the output signals reconstructed without threshold

crossing (less than 1).

A suitable measure for the richness of the reservoir

is believed to be the Average state entropy (ASE), with

the instantaneous values showing how diverse the reser-

voir signals are in time. Moreover as mentioned in (Oz-

turk et al. 2007). ASE provides a measure for the vol-

ume of the reservoir manifold spanned by diverse sig-

nal trajectories. Using an approximation of the Renyi’s

quadratic entropy, the instantaneous state entropy for

the reservoir states x(t) = x1t, x2t, .., xN t can be calcu-

lated using a Gaussian kernel(σ) as follows:

H(x) = −log

[
1

N2

∑
j

(∑
i

σ(xj − xi)
)]

(16)

Here we calculated the instantaneous state entropy

values using a Gaussian kernel with radius 0.3. In Fig.

8(c) we clearly observe that the self-adaptive reservoir

network achieves considerably higher average state en-

tropy as compared to the static reservoir. Furthermore,

as the spectral radius of the reservoir weight matrix

increases there is a gradual increase in ASE values in

both cases. However our network shows high ASE val-

ues for a spectral radius greater than unity, which is

in sharp contrast to previous observations with static

reservoirs like Echo state networks. This can be at-

tributed to the intrinsic plasticity mechanism in the

network, which allows for increased spectral spread of

the network connectivity, with the higher ASE values

indicating a much richer repertoire of activity within

this network. In general keeping task independent per-

formance in mind, it is desirable to have a large reser-

voir manifold volume. Here our adapted network clearly

outperforms the static case.

5 Discussion and Biological relevance

In this work we have presented and evaluated a self-

adaptation mechanism for the reservoir computing net-

work based on the information dynamics of the inter-

nal recurrent neural layer. This mechanism successfully

combines an intrinsic plasticity rule using a generic prob-

ability distribution (Weibull) with a neuron leak adjust-

ment rule based on local information storage measure.

The neuron leak rate not only governs the degree of in-

fluence of local memory but also acts as the neuronal

activity time-constant. Due to feedback connections in

such recurrent networks, chaotic or runaway activity

had been previously observed in the works of (Som-

polinsky et al. 1988) and (Sussillo and Abbott 2009).

The intrinsic plasticity mechanism ensures information

maximization at each neuron output while homeostati-

cally regulating the network activity and prevents such

runaway dynamics. In general, our mechanism allows

minimal parameter tuning, with two of the important

12 Sakyasingha Dasgupta et al.

 Recall zone
(AMOSII turns left)

Time (x100 msec)

1000 2000 3000250015005000

2

0

-2

2

0

-2

2

0

-2

2

0

-2

2

0

-2

2

0

-2

0.2

0

-0.2

1000 2000 3000

−2

−1

0

1

2

Time (x100 msec)

1000 2000 3000

−2

−1

0

1

2

Time (x100 msec)

RECALL JUNCTION

LEFT TURN
 CUE V

a
ri

a
b

le
 D

e
la

y
 T

im
e

T-MAZE

(a) (b)

(c)

Left steering signal Right steering signalRight light sensor (LDR2)

Front ultra-sonic sensor (US1)

Front ultra-sonic sensor (US2)

Fig. 7 (a) Plots of the sensor signals from AMOS II recorded during the experiment, which act as the four inputs to the
reservoir network. The signals shown are from a single run where the cue signal (light source) was applied to the left, while
walking along the corridor (LDR1 � LDR2). The two ultrasonic sensors become active at the same time when AMOS-II
reaches the T-junction (cue recall zone). (b) Plots the trained reservoir network outputs (Solid-line: learned behavior; Dotted-
line: desired behavior). Here the left steering signal is active (+1) while the right steering signal is inactive (-1) and the robot
makes a left turn (behavior learned at the same time step of the activation of the US1 and US2 sensors indicating the recall
zone. (c) Pictorial representation of the T-shaped maze setup. While walking along the long corridor, a cue in the form of
a light signal is applied either to the left or right side of AMOS II. The robot needs to recall this cue at the recall junction
and execute the corresponding turning behavior. The temporal delay between the time of presentation of cue and the end of
the corridor (T-junction) is the total memory span. This can vary with different delay times for small and long mazes. The
screenshots (right) from the experiment show the actual behavior of the hexapod while walking along the corridor.

network parameters leak-rate, shape and scaling prop-

erties of neurons transfer function adjusted on the fly. In

contrast most static reservoirs pre fix these parameter

values or adapt them based on output error gradients

that do not take into account difference in timescales

of the input signal.

The ability to precisely track and tell time is criti-

cal for the learning of ordered motor behaviors as well

as the underlying cognitive process, in all living crea-

tures. However, the mechanism by which the brain tells

time is still not clearly understood. Although it is still

debated whether dedicated or intrinsic mechanisms un-

derlie the timing process, some experimental and the-

oretical studies have validated the concept of neural

circuits being inherently capable of sensing time across

time scales (Tetzlaff et al. 2012). Large recurrent neural

networks like these reservoir systems could be consid-

Information dynamics based self-adaptive reservoir for delay temporal memory tasks 13

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spectral radius

A
v

e
ra

g
e

 s
ta

te
 e

n
tr

o
p

y

Adaptive Reservoir

Static Reservoir

0 500 1000 1500 2000 2500 3000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

R
es

er
vo

ir
 n

eu
ro

n
 a

ct
iv

at
io

n
s

Time

0 500 1000 1500 2000 2500 3000

50

100

150

200

250

300

−6

−4

−2

0

2

4

6

8

10

Local active inform
ation storage

Time

(a)

(b)

(c)

R
e
s
e
rv

o
ir

 n
e
u

ro
n

s

Fig. 8 (a) Plot of the Local active information storage values for 300 reservoir neurons at different time steps (color coding
corresponds to the local active information storage values at different time steps.). (b) Reservoir activations for a randomly
selected subset of the neurons. (c) The plot of average state entropy for different spectral radius values of the reservoir
connectivity matrix. Significantly higher entropy values observed for our adaptive network as compared to static reservoirs.
Optimal spectral radius for static reservoir is between 0.9 and 1.0, while for the adaptive reservoir, optimal state entropy is
reached at spectral radius of 1.2.

ered as an abstraction of the mammalian cortex. Ac-

cordingly (Buonomano and Laje 2010) suggested the

concept of population clocks, where time is encoded in

the time varying patterns of activity of neuronal pop-

ulations, which emerge from the internal dynamics of

the recurrent network. It is important to note that con-

tinuous input signals to these recurrent networks or

the brain, in general can contain many different time

scales. In order to account for varying time scales of

input patterns to such networks, classically they have

been setup in a hierarchical arrangement with differ-

ent pre-determined timescales for each layer of hierar-

chy (Jaeger 2007), (Yamashita and Tani 2008). How-

ever, monkey experiments (Bernacchia et al. 2011) have

shown that individual neurons can have different times

cales of reward memory correlated with the actual be-

havior. As such it is highly plausible that neurons in a

single recurrent network can adjust or tune there indi-

vidual time constants to account for a multi-time scale

input in contrast to a hierarchical arrangement with

different fixed time scales.

As observed in Figs. 7(a) and 8(a), high local active

information storage regions in the network correspond

to significant events in time. According to the learning

rule from equation (3) and equation (10) the individual

neuron leak rates (time constants) have been adjusted

according to the change of their AIS values with respect

to a predefined threshold. In other words we were able

to incorporate a self-adapting non-uniform leak rate in

the network that can account for varying timescales in

the input stream as well as encode timing of events. As

such in this work we not only present a mechanism to

achieve a self-adaptive reservoir that can achieve a high

degree of delayed memory capacity. From a biological

perspective, we show that time is not only encoded in

the internal recurrent dynamics but also single neurons

may adjust their time-constants in order to account for

high relevance events in the input data.

6 Conclusion

In this work we present a self-adaptive reservoir (RNN)

framework such that using an information theoretic ap-

proach we have successfully adapted the local neuron

(dynamic reservoir) time constants via it’s leak rate,

while at the same time the network maintains home-

ostasis through the generic intrinsic plasticity mech-

14 Sakyasingha Dasgupta et al.

anism. The evaluated performance on the two stan-

dard benchmark tasks demonstrates that our adapta-

tion mechanism clearly outperforms static reservoirs.

Furthermore we demonstrate the application of our net-

work to the control of autonomous robotic agents through

the maze navigation experiments. Here our network is

effective not only in reconstructing the original trajecto-

ries but can also cope with the variable temporal delay

memory problem. It has been widely accepted that tim-

ing of events and memory guided behavior are intrinsi-

cally related. Specially for memory in the shorter time-

scale of seconds to minutes (working memory (Unger-

leider et al. 1998)), the system needs the ability to rec-

ognize important events in time. We achieve this in

our network via the leak-adaption that allows the neu-

rons to speed up or slow down their dynamics based

on the incoming input, while at the same time encode

highly relevant events using the active information stor-

age measure. Both the simulation and real robot exper-

iments demonstrate such memory guided behavior with

the reservoir adapted according to the incoming sensory

signals.

As a future direction more memory intensive tasks like

simultaneous localization of multiple cue signals and

cascading different temporal delays will be tested. Due

to the universal computing power of recurrent neural

networks, this type of adaptive reservoir can not only

be used for temporal memory tasks, but also prove use-

ful in generic signal processing requiring functional ap-

proximation of multi-time scale signals. Furthermore,

we also aim to integrate our network with reinforcement

learning techniques (Manoonpong et al. 2013) requiring

varying time scales of reward related memory for effec-

tive behavioral control of autonomous agents. Specif-

ically on partially observable markov decision process

(POMDP) problems which require a rich memory con-

tent for effective solution, our self-adaptive network of-

fers potential applications.

Acknowledgements The research leading to these results
has received funding from the Emmy Noether Program DFG,
MA4464/3-1, by the European Communitys Seventh Frame-
work Programme FP7/2007-2013 (Specific Programme Co-
operation, Theme3, Information and Communication Tech-
nologies) under grant agreement no.270273, Xperience , by
the Federal Ministry of Education and Research(BMBF) by
grants to the Bernstein Center for Computational Neuro-
science(BCCN) Göttingen, grant number 01GQ1005A, project
D1 and by the Max Planck Research School for Physics of Bi-
ological and Complex Systems.

A Appendix

The activation of each reservoir neuron with a tanh non-
linearity with slope(a) and shape(b) parameters can be repre-

sented as θ = tanh(ax+b). The activations are time dependent
as shown in equation (4), however here we neglect the time
variable for mathematical convenience.
The tanh non-linearity can be represented in an exponential
form as follows:

θ = tanh(ax+ b) =
e2(ax+b) − 1

e2(ax+b) + 1
(17)

Differentiating this w.r.t x, a and b and representing in
terms of θ we get the following set of base equations:

∂θ

∂x
= a(1 − θ2),

∂θ

∂a
= x(1 − θ2),

∂θ

∂b
= (1 − θ2)

(18)

The probability distribution of the two-parameter Weibull
random variable θ is given as follows:

fweib(θ;β, α) =

{
α
β

(θ
β

)α−1exp− (θ
β

)α if θ ≥ 0

0 if θ < 0
(19)

Inorder to find a stochastic rule for the calculation of
the neuron tranfer functin parameters a and b, we need to
minimize the Kullbeck-Leibler (KL) divergence between the
real output distribution fθ and the desired distribution fweib.
The KL-divergence (DKL(fθ, fweib)) is given by:

D = DKL(fθ, fweib) =

∫
fθ(θ)log

(fθ(θ)

fweib(θ)

)
dθ

=

∫
fθ(θ)logfθ(θ)dθ

− (α− 1)

∫
fθ(θ)log(θ)dθ

+
1

βα

∫
fθ(θ)θ

αdθ + C

(20)

Using the relation fθ(θ) = fx(x)
∂θ
∂x

for a single neuron with

input x and output θ and representing the integrals in terms
of the expectation(E) quantities, the above relation can be
simplified to (here C is a constant):

D = −E
[
log
(∂θ
∂x

)]
+ E[logfx(x)]

+
1

βα
E(θα) − (α− 1)E(log(θ)) + C

(21)

Using the partial derivatives from equation (18) and dif-
ferentiating D w.r.t the parameter b yields:

∂D

∂b
= E

[
2θ +

α

βα
θα−1(1 − θ2) − (α− 1)θ−1(1 − θ2)

]
= E

[
2θ + θ−1(1 − θ2)

(α

βα
θα − α+ 1

)] (22)

Similarly differentiating D w.r.t the parameter a results
in:

∂D

∂a
= E

[
2θx+ xθ−1(1 − θ2)(

α

βα
θα − α+ 1) −

1

a

]
(23)

Information dynamics based self-adaptive reservoir for delay temporal memory tasks 15

From the above equations we get the following on-line
learning rule with stochastic gradient descent with learning
rate η

∆b = −η
[
2θ + θ−1(1 − θ2)

(α

βα
θα − α+ 1

)]
. (24)

∆a =
η

a
+ x∆b (25)

Note: This relationship between the neuron parameter up-
date rules (∆a and ∆b) is generic and valid irrespective of the
neuron non-linearity or target probability distribution.

References

Antonelo, E., Schrauwen, B., Stroobandt, D. (2008). Mobile
Robot Control in the Road Sign Problem using Reservoir
Computing Networks. Proceedings of the IEEE Int. Conf.

on Robotics and Automation (ICRA) 911-916.
Bertschinger, N., Natschläger, T. (2004). Real-time compu-

tation at the edge of chaos in recurrent neural networks.
Neural Computation 16, 1413-1436.

Bernacchia, A., Seo, H., Lee, D., Wang, X.J. (2011). A reser-
voir of time constants for memory traces in cortical neu-
rons. Nature Neuroscience 3, 366372.

Boedecker, J., Obst, O., Mayer, M.N., Asada, M. (2009). Ini-
tialization and Self-Organized Optimization of Recurrent
Neural Network Connectivity. HFSP Journal 5, 340-349.

Buonomano, D.V., Laje, R. (2010). Population clocks: motor
timing with neural dynamics. Trends in Cognitive Science
14, 520-527.

Büsing, L., Schrauwen, B., Legenstein, R. (2010). Connectiv-
ity, dynamics, and memory in reservoir computing with
binary and analog neurons. Neural Computation 22, 1272-
1311.

Desai, N.S., Rutherford, L.C., Turrigiano, G.G. (1999). Plas-
ticity in the intrinsic excitability of cortical pyramidal
neurons. Nature Neuroscience 2, 515-520.

Ganguli, S., Dongsung, H., Sompolinsky, H. (2008). Memory
Traces in Dynamical Systems. Proc. Natl Acad. Sci. USA

105, 18970-18975.
Jaeger, H. (2001). Short term memory in echo state networks.

GMD Report 152, German National Research Center for In-

formation Technology 60 pp.
Jaeger, H. (2003). Adaptive Nonlinear System Identification

with Echo State Networks. In Advances in Neural Informa-

tion Processing Systems 593-600.
Jaeger, H., Haas, H. (2004) Harnessing Nonlinearity: Predict-

ing Chaotic Systems and Saving Energy in Wireless Com-
munication. Science 2, 78-80.

Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U. (2007).
Optimization and Applications of Echo State Networks
with Leaky-integrator Neurons. Neural Networks 20, 335-
352.

Jaeger, H. (2007). Discovering multiscale dynamical features
with hierarchical echo state networks. (Tech. Rep. No. 10).

Bremen: Jacobs University.
Li, C. (2011). A model of Neuronal Intrinsic Plasticity. IEEE

Trans. on Autonomous Mental Development 3, 277-284.
Lizier, T.J., Pritam, M., Prokopenko, M. (2011). Information

Dynamics in Small-world Boolean Networks. Artificial Life
17, 293-314.

Lizier,T.J., Prokopenko, M., Zomaya, A.Y. (2012). Local
measures of information storage in complex distributed
computation. Information Sciences 208, 39-54.

Lukosevicius, M., Jaeger, H. (2009). Reservoir Computing
Approaches to Recurrent Neural Network Training. Com-

puter Science Review 3, 127-149.
Maass, W., Natschläger, T., Markram, H. (2004). Compu-

tational Models for Generic Cortical Microcircuits. In

Computational Neuroscience: a Comprehensive Approach 18,
575605

Manoonpong, P., Kolodziejski, C., Wörgötter, F., Morimoto
J. (2013). Combining Correlation-Based and Reward-
Based Learning in Neural Control for Policy Improve-
ment. Advances in Complex Systems, in press

Manoonpong, P., Parlitz, U., Wörgötter F. (2013). Neu-
ral Control and Adaptive Neural Forward Models for
Insect-like, Energy-Efficient, and Adaptable Locomotion
of Walking Machines. Front. Neural Circuits 7:12.

Ozturk, M.C., Xu, D., Prncipe, J.C. (2007). Analysis and
design of echo state networks. Neural Computation 19, 111-
138.

Paleologu, C., Benesty, J., Ciochino, S. (2008). A Robust
Variable Forgetting Factor Recursive Least-Squares Algo-
rithm for System Identification. IEEE In Signal Processing
Letters, IEEE 15, 597-600

Ren, G., Chen, W., Kolodziejski, C., Wörgötter, F., Das-
gupta, S., Manoonpong, P. (2012). Multiple Chaotic
Central Pattern Generators for Locomotion Generation
and Leg Damage Compensation in a Hexapod Robot.
IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) 2756-2761.
Schrauwen, B.,Wardermann, M., Verstraeten, D., Steil, J.J.,

Stroobandt, D. (2008). Improving Reservoirs using Intrin-
sic Plasticity. Neurocomputing 71, 1159-1171.

Shi, Z., Han, M. (2007). Support Vector Echo-State Ma-
chine for Chaotic Time-Series Prediction. Neural Net-

works, IEEE Transactions on 18, 359-372.
Sompolinsky, H., Crisanti, A., Sommers, H.J. (1988). Chaos

in Random Neural Networks. Phys. Rev. Lett 61, 259-262.
Steingrube, S., Timme, M., Wörgötter, F., Manoonpong,

P. (2010). Self-Organized Adaptation of a Simple Neu-
ral Circuit Enables Complex Robot Behaviour. Nature
Physics 6, 224-230.

Sussillo, D., Abbott, L.F. (2009). Generating Coherent Pat-
terns of Activity from Chaotic Neural Networks. Neuron

4, 544-557.
Tetzlaff, C., Kolodziejski, C., Markelic, I., Wörgötter, F.

(2012). Time scales of memory, learning, and plasticity.
Biological Cybernetics 6, 715-26.

Triesch, J. (2007). Synergies between Intrinsic and Synaptic
Plasticity Mechanisms. Neural Computation 4, 885-909.

Turrigiano, G., Abbott, L.F., Marder, E. (1994). Activity-
dependent changes in the intrinsic properties of cultured
neurons. Science 264, 974-977.

Ungerleider, L.G., Courtney, S.M., Haxby, J.V. (1998). A neu-
ral system for human visual working memory. Proc. Natl.

Acad. Sci. USA 95, 883-890
Yamashita Y., Tani J. (2008). Emergence of Functional Hier-

archy in a Multiple Timescale Neural Network Model: A
Humanoid Robot Experiment. PLoS Comput Biol 4(11):
e1000220. doi:10.1371/journal.pcbi.1000220.

	Introduction
	Self-Adaptive Reservoir Framework
	Experimental Setup and Analysis
	Results
	Discussion and Biological relevance
	Conclusion
	Appendix

