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Classical conditioning (conventionally modeled as correlation-based learning) and op-

erant conditioning (conventionally modeled as reinforcement learning or reward-based

learning) have been found in biological systems. Evidence shows that these two mecha-
nisms strongly involve learning about associations. Based on these biological findings, we

propose a new learning model to achieve successful control policies for artificial systems.

This model combines correlation-based learning using input correlation learning (ICO
learning) and reward-based learning using continuous actor-critic reinforcement learning

(RL), thereby working as a dual learner system. The model performance is evaluated
by simulations of a cart-pole system as a dynamic motion control problem and a mobile

robot system as a goal-directed behavior control problem. Results show that the model

can strongly improve pole balancing control policy; i.e., it allows the controller to learn
stabilizing the pole in the largest domain of initial conditions compared to results ob-

tained when using a single learning mechanism. This model can also find a successful

control policy for goal-directed behavior; i.e., the robot can effectively learn to approach
a given goal compared to its individual components. Thus the study pursued here sharp-

ens our understanding of how two different learning mechanisms can be combined and
complement each other for solving complex tasks.

Keywords: Classical conditioning, operant conditioning, associative learning, reinforce-

ment learning, pole balancing, goal-directed behavior

1. Introduction

In biological systems, two classes of conditioning for associative learning are known

[5]. One is classical conditioning [50] involving presentations of a conditional stimu-

lus (CS) along with a significant or unconditional stimulus (US). The US generally
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drives an unconditional response (UCR), usually a reflex (e.g., salivation in dogs

when they encounter food). Once the US and CS become associated, animals begin

to perform a behavioral response to the CS rather than the US where this response

is called a conditional response (CR). This modification basically happens only if

the CS is a predictor for the US [56]. Thus the CS normally precedes the US ([50,

70], but see [5]). Another type of conditioning is operant or instrumental condition-

ing [59, 63]. It mainly involves a reinforcer (i.e., a US) associated with behavior

modification instead of another stimulus. The probability of a specific behavior is

increased or decreased through positive or negative reinforcement at each time that

the reinforcement is generated.

Although these conditioning or learning mechanisms are different from each

other, a number of studies on animal leaning suggest that they may act in com-

bination [5, 15, 35, 47, 55], rather than separately or alternatively, to obtain an

appropriate behavior. Experiments that have supported this idea were presented

in, e.g., [11, 39, 68]. Williams and Williams [68] observed a pigeon pecking at an

illuminated key in a Skinner box. The results suggest that the desired key-pecking

behavior CR may be shaped by not only operant conditioninga but also by classical

conditioning; since imposing an omission schedule on the key-light, key-peck associ-

ation did little to revoke the conditional pecking response. Hence, it seems that the

existing occasional pairing of the key-light CS with the food US was adequate to

drive the pecking behavior (CR), which thus emerged from classical conditioning.

Lovibond [39] performed experiments in rabbits by providing separately trained

conditional stimuli during reinforced operant responding. His results showed that

the strength of an operant response can be influenced by simultaneously presenting

a classically CS. Brembs and Heisenberg [11] conducted experiments in the fruit flies

(Drosophila). Their results showed that there is a situation where both operant and

classical predictors play their roles at the same time, such that the situation can be

more easily learned than in the separate case.

In animal training, evidence also reveals that many animals including rodents,

dogs, pigeons, dolphins, seals, and whales, can effectively learn to do some sophis-

ticated tasks when they are trained using a combination of these mechanisms [25].

For instance, marine animal trainers use a whistle as predictive information to “tell”

their animals that a reward (e.g., food) is forthcoming. Thus, marine animals learn

to associate the sound of whistle and food (i.e., learning via classical conditioning).

When the animals perform a desired behavior (e.g., come, jump, flip, etc.), they

first hear the sound indicating that they have performed appropriately and then

they receive food (i.e., learning via operant conditioning). After several repetitions,

the animals will perform a certain behavior as soon as they hear the sound where

they expect to receive food afterwards.

Classical conditioning is often modeled as a form of correlation-based (differen-

aIn this situation, the animal was induced to respond to the key in association with a reward (i.e.,
food). This procedure is also called autoshaping.
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tial Hebbian) learning [32, 37, 52, 70] in computational neuroscience. This approach

uses the correlations between external stimuli (i.e., the US and CS) for synaptic

plasticity leading to an anticipatory action (see Sec. 2 for more details). Operant

conditioning is often modeled as reward-based learning or reinforcement learning

(RL, e.g., Temporal Difference (TD)-learning [7, 62, 67]) in computer science. This

approach uses predefined rewards and punishments in the environment as evaluation

allowing an agent to maximize or optimize its own expected cumulative future re-

ward (or expected return). As a consequence, this leads to a corresponding behavior

(see Sec. 3 for more details).

These two conditioning concepts or learning mechanisms have been widely ap-

plied to artificial agents (robots) for solving various tasks including the generation

of self-organizing behavior and autonomous systems [8]. Generally, much research

has separately used them to enable agents to learn solving their tasks [7, 10, 20,

38, 40, 42, 51, 53, 62]. In this study, we point out that these two learning frame-

works can complement each other leading to policy improvement. Correlation-based

learning can quickly find a correlation between a state and an unwanted condition

(i.e., reflex or failure recognized by an immediate reflex signal), but cannot eval-

uate whether a given state or weight change predicts something “good” or “bad”

which will happen many steps away in the future. Consequently, it cannot properly

learn solving some difficult tasks (e.g., delayed reward tasks) and cannot explic-

itly derive a goal-directed policy. On the other hand, reward-based learning can

derive a policy according to the (delayed) reward signal but using it without any

prior knowledge (predefined control parameters), environment or system models, or

appropriate guidance generally takes many learning trials to improve the control

performance. Therefore, we combine correlation-based learning (using input corre-

lation learning (ICO learning) [52]) and RL (using continuous actor-critic RL [19])

in parallel to let ICO learning extract important features directly used to guide

the learning strategy of continuous actor-critic RL. If we can extract important or

proper features for the task, a model of the policy can be simple and the policy can

be easily improved.

To investigate this hypothesis, to show how these two biologically-inspired learn-

ing mechanisms can be combined as a neural learning system, and to present its

performance, we chose pole balancing and goal-directed behavior control problems

as two different case studies or testbeds. Generally, we are not interested in solving

these two tasks per se. Instead, we would like to show that the proposed combi-

nation can solve model-free control problems and is not limited to a specific task.

Additionally, we would like to suggest that this combination can be an advantageous

but simple way (i.e., only combining them in parallel without modifying their learn-

ing mechanisms) to solve (dynamic) sensorimotor control problems with continuous

signals. Through the performed experiments we hope that this model may help to

better understand interactions between the two learning mechanisms. To a certain

extent, the model might be related to neural learning in biological systems and it
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may provide a computationally oriented perspective on animal learning. Finally, we

would like to emphasize that this combinatorial learning framework suggests how a

prior knowledge can be provided to RL and how RL can be guided and shaped for

policy improvement. To our knowledge, this kind of combinatorial learning method

(which is simple, partially related to neural learning mechanisms in the brain–see

the Discussion and Conclusions section below–and leads to policy improve) has not

been investigated and presented so far.

This paper is organized as follows. In section 2 we present the neural circuit of

ICO learning while the neural circuit of continuous actor-critic RL is given in sec-

tion 3. In section 4 we introduce our learning model which combines both learning

mechanisms inspired by biological findings. This model will lead to policy improve-

ment. In section 5 we demonstrate its performance using the pole balancing and

goal-directed behavior control problems and provide a comparison of different learn-

ing mechanisms. This paper finishes in section 6 with discussion and conclusions.

2. Correlation-Based Learning

For correlation-based learning, we used input correlation learning (ICO rule) [52]

(see Fig. 1) since this learning rule allows implementation of fast and stable learn-

ing and it has been also successfully applied to real robots for obtaining adaptive

behavior [40, 42, 53].
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Fig. 1. Neural circuit of input correlation learning (ICO learning) for the multiple plastic synapses
of predictive inputs. The learning rule is derived from differential Hebbian learning. Here, the

output neuron (or learner neuron) was modeled as a simple linear neuron (see text for details). It
generates a continuous signal for controlling a system.
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ICO learning is a form of online unsupervised learning where its rule for synaptic

adaptation is based on the cross-correlation of the two types of input signals: Mul-

tiple predictive signals (here considered as CS) which are earlier occurring stimuli

and a single reflex signal (here considered as a US) which arrives later with cer-

tain delays and drives an unwanted response (or reflex). The learning goal of ICO

learning is to use a predictive signal ((observable) state of the system) to predict

the occurrence of a reflex signal (some exogenous immediate feedback, e.g., reach-

ing a failure state), thereby allowing an agent to react earlier. In other words, this

learning mechanism enables the agent to learn to perform an anticipatory action

to avoid the reflex. For example, heat radiation (predictive signal) precedes a pain

signal (reflex signal) when touching a hot surface. Thus, we learn an anticipatory

action to avoid the late unwanted stimulus (i.e., avoiding to touch the hot surface).

Normally, the synaptic adaptation of ICO learning changes through heterosy-

naptic interactions [27] as a consequence of the order of the arriving inputs. If the

predictive inputs are followed by the reflex input, the plastic synapses of the predic-

tive inputs get strengthened but they get weakened if the order is reversed. Hence,

this form of plasticity depends on the timing of correlated neural signals. Formally,

we have

OICO(t) = ρ0x0(t) +

N∑
k=1

ρk(t)xk(t) (1)

as the output neuron (OICO) driven by a linear combination of the reflex input

(x0) and the multiple predictive inputs (xk). N denotes the number of predictive

inputs. ρ0 is the synaptic strength of the reflex input. This synaptic strength is set

to a positive value, e.g., 1.0, and remains unchanged, like an innate reflex. During

learning, the plastic synapses (ρk) get changed by differential Hebbian learning

[32, 37] using the cross-correlation between both inputs (i.e., x0 and xk). This is

expressed as:

dρk(t)

dt
= µxk(t)

dx0(t)

dt
, k = 1, . . . , N. (2)

µ is the learning rate which defines how fast a system can learn. It is generally set

to a value smaller than 1.0. This learning mechanism leads to weight stabilization

as soon as x0 = 0 [52], meaning that the reflex has been successfully avoided. As

a result, we obtain behavioral and synaptic stability at the same time without any

additional weight-control mechanisms.

Due to the learning rule, ICO learning can be considered as a model-free method

since its does not require a system or environment model. However, one should note

that ICO learning requires the proper design of a reflex into the system from the

beginning. This means that we have to set up a feedback system which has a desired

state and an error signal (x0 → 0) which drives learning. If the tasks become more
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complex where a reflex cannot be properly designed or no correlation between a

reflex signal and a predictive signal exists at all, ICO learning will fail.

3. Reward-Based Learning

For reward-based learning, we used continuous actor-critic reinforcement learning

(RL) [19] (see Fig. 2) since it is capable of generating (multidimensional) contin-

uous actions thus providing a smooth control performance. It is also practical for

continuous state-action problems [19], like dynamic motion control [20, 46]. In ad-

dition, it is based on a biological learning model [70] where its learning rule for

synaptic adaptation considers an association between stimuli and/or actions with

the reinforcement that an agent receives. Formally, the reinforcement is a reward or

a punishment which is “evaluative feedback” defined by the designers of a system.

Thus, this kind of learning mechanism is minimally supervised because an agent

is not told explicitly what actions to take in a particular situation. Rather it must

work this out for itself on the basis of the reinforcement.

Continuous actor-critic RL is divided into two sub-mechanisms: The learning of

an action function (actor) and the learning of an evaluation function (critic). The

action part is the controller of an agent. In this study, it was designed as a stochastic

unit proposed in [24]. If we consider one dimensional output, its output (ORL) is

specified by:

ORL(t) = ε(t) +

N∑
k=1

wk(t)xk(t), (3)

where N denotes the number of sensory inputs (xk) which, here, are comparable

to the predictive inputs of ICO learning. ε is an exploration term. According to [19],

it is varied based on a modulation schemeb given by:

ε(t) = ξσ(t) ·min[1,max[0,
Vmax −V(x(t))

Vmax −Vmin
]]. (4)

σ is Gaussian distributed noise with zero mean and standard deviation of one. V

is a value function (see its equation below) that estimates the expected cumulative

future reward or the expected return where the reward is used to estimate how good

it is for an agent to be in a given state. Vmax and Vmin are the maximal and minimal

values of V . This way, the exploration is large if V is close to Vmin. On the other

hand, the exploration is small (close to zero) if it is close to Vmax meaning that

learning shows good prediction or the performance is improved. ξ is an additional

scale factor. It is introduced in order to be able to amplify the exploration level.

bThe scheme follows the intuition that an agent should explore a lot if its expected cumulative
future reward V is small (close to Vmin). This means that it has a poor control policy. On the

other hand, it should exploit or follow the control policy if V is close to Vmax. However, this
normally works if Vmin and Vmax could be estimated.
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Fig. 2. Neural circuit of continuous actor-critic reinforcement learning (RL). The learning mecha-

nisms of the actor and critic are based on temporal difference (TD) learning. The actor component
was modeled as a stochastic neural network while the critic unit was modeled as a radial basis func-

tion (RBF) neural network (see text for details). Note that in this framework, the actor provides

a continuous output signal for controlling a system.

The stochastic unit is related to two biological learning concepts, called behavior

oscillation [26] and successive approximation [59] (see also [24] for more details).

During learning, the synaptic weights (wk) of the actor change over time. They

are basically changed by a stochastic reinforcement learning algorithm [24]. Instead

of using the error of a direct reward, which is one of the learning parameters and

originally used in the stochastic reinforcement learning algorithm, here we used the

temporal difference (TD) error [7, 19] (i.e., the error of an internal reward [7]). By

doing so, delayed reward control problems can also be solved [7, 19]. The equation

of the weight adaptation is described by:

dwk(t)

dt
= αδ(t)xk(t)ε(t), k = 1, . . . , N, (5)

where α is the learning rate and generally set to a value smaller than 1.0. δ is
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an approximation to the TD error in continuous time described as an internal

reinforcement signal provided by the critic (see below).

For the critic network, according to [45] we used a radial basis function (RBF)

neural network as a function approximator which attempts to construct the approx-

imation of the value function V . It is governed by:

V (x(t)) =

M∑
j=1

vj(t)yj(x(t)), (6)

where yj are the outputs from the normalized Gaussian basis functions given

by:

yj(x(t)) =
aj(x(t))∑M
l=1 al(x(t))

, aj(x(t)) = e−‖s
T
j (x(t)−cj)‖2 . (7)

The vectors cj and x define the center and the input feature, respectively. sj
is the diagonal matrix of the inverse covariance of the RBF neural network. M is

the number of hidden neurons. According to [19], vj are synaptic weights which are

updated by:

dvj(t)

dt
= λδ(t)yj(x(t)), j = 1, . . . ,M, (8)

where λ is the learning rate. It is generally set to a value smaller than 1.0. According

to [19], the TD-error δ is basically computed from the prediction as follows:

δ(t) = R(t)− 1

τ
V (x(t)) + V̇ (x(t)), (9)

where R is an external reinforcement signal provided by designers. τ is the time

constant of a discount factor. V is the value function (see Eq. 6) and V̇ is its

derivative with respect to time. Note that using the Euler discretization, the TD

error in continuous time is compatible to the conventional TD error [62]: δ(t) =

R(t) + γV (x(t)) − V (x(t − 1)) where γ = 1 − ∆t
τ is the discount factor and ∆t is

the time step of the Euler differentiation.

4. Combining Correlation-Based and Reward-Based Learning

In the previous sections we have presented ICO learning and continuous actor-critic

RL. It is known that ICO learning can quickly learn a correlation between a failure

state recognized by an immediate reflex signal and a failure avoidance behavior (or

also called reflex avoidance behavior) controlled by predictive signals [52]. However,

it cannot evaluate whether a given state or weight change predicts something “good”

or “bad” which will happen many steps away in the future. As a consequence, this

makes it difficult for the controller to properly learn solving some difficult tasks
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(see Sec. 5). On the other hand, continuous actor-critic RL can make predictions

through its evaluation process such that it can solve the tasks but in general it is

slower than ICO learning (see Sec. 5). In addition, due to its stochastic process it

requires several learning repetitions to ensure that a successful control policy has

been achieved.

Thus, in this section, we introduce a combinatorial learning model. It makes use

of the advantage of each learning mechanism, resulting in an appropriate acquisition

of the control policy that outperforms either ICO learning or continuous actor-critic

RL alone (see Sec. 5). Basically, there are two ways of combining ICO learning and

continuous actor-critic RL: Sequential or parallel.

Sequential combination (see Fig. 3), which we investigated previously [43], is

achieved by initially using ICO learning to extract reward-related features for con-

tinuous actor-critic RL. Afterwards continuous actor-critic RL uses the extracted

features as priors (i.e., initial control parameters) to improve the control policy

of the system. However, the drawback of this learning scheme is that it is techni-

cally inconvenient since we need to let the ICO learning mechanism learn the whole

feature space first such that reward-related features are properly extracted.

 AgentNeural ICO learning      Neural actor-critic
 reinforcement learning
  

 Agent

Learned weights

FeedbackFeedback

Fig. 3. Sequential combination model. ICO learning first learns to find a solution controlling
a system without any prior knowledge. Afterwards the learned weights from ICO learning are

provided to continuous actor-critic RL for initialization. Finally, continuous actor-critic RL serves

as an add-on learning process to enhance the performance of a controller (see [43] for more details).

In contrast, the parallel combination, proposed in this study and later called here

combinatorial learning (see Fig. 4), is technically more convenient since it allows

these two learning mechanisms to simultaneously learn, thereby working as a dual

learner system. By doing so, they receive sensory feedback from the agent in parallel

and adapt their weights accordingly. Their output signal contributes equally to the

control of the agent. Thus, the final output (OCOM ) is described as:

OCOM (t) = ζ · (OICO(t) +ORL(t)), (10)

where OICO and ORL are the output of ICO learning and continuous actor-

critic RL, respectively. ζ is a scale factor which is introduced to ensure that the

sum is a valid control signal. The complete algorithm of combinatorial leaning with

pseudocode is shown in Table 1.
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Fig. 4. Combinatorial learning model. It combines ICO learning and continuous actor-critic RL

in a parallel manner for controlling an agent. In this learning scheme, each learning mechanism

develops its weights independently, but they are coupled by sensory feedback. This way, they
basically coadapt the control parameters (i.e., weights) leading to the improvement of the control

policy.

In this learning scheme, ICO learning and continuous actor-critic RL can com-

plement each other due to their learning principles. ICO learning (see Eq. 2) relies

on the predefined reflex signal, while continuous actor-critic RL (see Eq. 5) de-

pends on the TD error (δ) based on the estimated value function and the reward.

As a consequence of the reflex avoidance learning principle, weight adaptation of

ICO learning is initially more relevant than that from continuous actor-critic RL

(until the value function is properly estimated). Thus, in some situations, like a

pole balancing task (see Sec.5.1), ICO learning quickly update weights (i.e., control

parameters) to enhance or guide the entire learning process that includes contin-

uous actor-critic RL. At the same time, ICO learning also utilizes the exploration

strategy of continuous actor-critic RL to indirectly adapt its weights. In other situ-

ations, like a goal-directed behavior task (see Sec. 5.2), ICO learning plays roles on

guiding continuous actor-critic RL to receive a reward and shaping a control policy.

However, if reflex signal and TD error disagree, ICO learning may interfere with

continuous actor-critic RL (see also Sec. 6 for more discussion on this).

Beside this, one important property of our approach is that we directly use sen-

sory inputs as the state of a system (i.e., continuous state) without resorting to the

explicit discretization of states and actions. Thus, this approach is capable of gener-

ating a continuous action leading to smooth control performance. It is also practical

for continuous state-action problems (e.g., pole balancing and goal-directed behavior

shown below) in particular in the domain of model-free control problems because of

the learning rules (i.e., correlation-based learning and reward-based learning) which

do not require a system or environment model.

5. Experiments and Results

We tested the performance of our combinatorial learning in two different tasks: A

dynamic motion control task using a simulated cart-pole system and a goal-directed

behavior control task using a simulated mobile robot system. In each of them we

compared the performance of three control schemes: ICO learning, continuous actor-
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Table 1. Combinatorial learning algorithm

Initialize ρk, wk, and vj to 0.0; ε = Gaussian random number

Repeat:

At time step t

1) observe reflex signal x0 and sensory signals xk which are the state x

2) compute control output

OICO ← ρ0 x0 +
∑N
k=1 ρkxk

ORL ← ε+
∑N
k=1 wkxk

OCOM ← ζ · (OICO +ORL)

3) perform action

4) observe reward R, new state x′ and new reflex signal x′0
5) obtain value function by computing

aj ← e−‖s
T
j (x−cj)‖2

yj ← aj∑M
l=1 al

V ←
∑M
j=1 vjyj

6) compute ε← ξσ ·min[1,max[0, Vmax−V(x)
Vmax−Vmin

]]

7) compute δ ← R+ γV (x′)− V (x)

8) update control parameters

ρk ← ρk + µxk(x′0 − x0)

wk ← wk + αδxkε

vj ← vj + λδyj
Until: Successful control policy is found or the maximum number of trials

is reached.

critic RL, and combinatorial learning. In addition, we also investigated interactions

between ICO learning and continuous actor-critic RL by observing learning curves

in order to understand their roles in combinatorial learning. It is important to

note that the aim of this study is not to claim that the combination outperforms

other/older methods for solving the tasks or model-free optimal control problems.

Thus, comparing our combinatorial learning with other baseline methods (like, dy-

namic programming) will go beyond the scope of this work. Instead, we emphasize

here that a combination is better than its individual components by utilizing the

learning properties of ICO learning and continuous actor-critic RL.

5.1. Dynamic Motion Control

In this section, we demonstrates the performance of combinatorial learning (see

Fig. 4) applied to a pole balancing problem [7] (see Fig.5). The task was to bal-

ance an inverted pendulum, which is mounted on a cart moving freely in a one-

dimensional interval, and to simultaneously avoid the interval boundaries. This
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cart-pole system was simulated on a desktop PC and updated by using a fourth-

order Runge-Kutta method with a time step of 0.01 s. It provides four state vari-

ables: The angle of the pole with the vertical (θ), the pole angular velocity (θ̇),

the position of the cart on the track (x), and the cart velocity (ẋ). Similar to [7],

the cart was bound to move in the interval −2.4 ≤ x ≤ 2.4 [m] and the angle was

allowed to vary in the interval −12 ≤ θ ≤ 12 [◦]. The dynamics of the cart-pole

system is modeled by:

θ̈ =

g sin θ + cos θ

(
−F −mlθ̇2 sin θ + µcsgn(ẋ)

M +m

)
− µpθ̇

ml

l

(
4

3
− mcos2θ

M +m

) , (11)

ẍ =
F +ml(θ̇2 sin θ − θ̈ cos θ)− µcsgn(ẋ)

M +m
, (12)

where g = 9.8 m/s2 denotes gravitational acceleration, M = 1.0 kg and

m = 0.1 kg are mass of the cart and pole, respectively. l = 0.5 m is half of the

pole length. µc = 5.0x10−4 and µp = 2.0x10−6 are friction coefficient of the cart

and pole, respectively. F is a continuous force applied to the cart which is directly

derived from the output of learning mechanisms with an amplifier gain of 10.0. Note

that all these parameters and the cart-pole equations are generally used [7, 49].

F
Gain

q

Feedback X
.
X qq

.
( ,  ,   ,  )

X = 0

X

Cart-pole system

  Neural 
 learning

Fig. 5. Cart-pole system for a dynamic motion control task (see text for details).

In fact, this task is difficult in its own right due to the limited boundaries of

the pole angle and in particular the cart position. The boundaries are used as a

standard benchmark setup in most control studies [7, 49]. In addition, its vertical

upright equilibrium point to be balanced is inherently unstable (i.e., as any small

disturbance may cause the pole to fall on the either side). From this setup, balancing

the pole at critical initial conditions (e.g., θ = 11 deg, x = 2.1 m) close to the
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boundaries is already difficult to find successful control policies by using a simple

reward function.

In this setup, the four state variables (x, ẋ, θ, θ̇) of the system were used as

sensory feedback (x1,2,3,4) to ICO learning (see Eq. 1) and continuous actor-critic

RL (see Eqs. 3 and 7). For ICO learning, these state variables were scaled onto

the interval [−1, 1] similar to [49] and the reflex signal (x0, see Eq. 1) was given

just before the system failed. The signal shows a positive activation (+1.0) if x <

−2.35 m or θ > 11.5◦, a negative activation (−1.0) if x > 2.35 m or θ < −11.5◦,

and 0 otherwise. Here, we set the learning rate (µ, see Eq. 2) of ICO learning to

0.1. Note that the weights (ρ1,2,3,4, see Eq. 2) are changed only for the positive

derivatives of the reflex signal, otherwise they remain unchanged. This is to avoid

negative correlations resulting in poor performance.

For continuous actor-critic RL, we allocated three bases for x, three for ẋ, six

for θ, and three for θ̇ according to a boxes approach (see [7] for more details).

This leads to 3x3x6x3 = 162 bases employed as the centers of the critic network.

Thus, the network has in total 162 hidden neurons (M = 162, see Eqs. 6 and 7)

which cover the state space of the system. The size or width of the Gaussian basis

functions was simply set to twice the distance between its center and the center of

its nearest neighbor. The reward signal (R, see Eq. 9) was set to −1 at failure (i.e.,

cart hits the boundaries or pole falls to ± 12 deg) and 0 otherwise [7]. Here, Vmax
and Vmin of the modulation scheme controlling the level of the exploration (ε, see

Eq. 4) were set to 0 and −1, respectively. In this setup, we set the scale factor (ξ) of

the exploration to 5.0. This is to obtain a better performance. Thus large changes

of the weights of continuous actor-critic can occur. The control parameters α (see

Eq. 5), λ (see Eq. 8), τ (see Eq. 9), and ζ (see Eq. 10) were set to 0.5, 0.5, 0.2, and

0.5, respectively.

We let the combinatorial learning mechanism learn to balance the pole on 25 x

49 initial conditions (θ, x) while θ̇ and ẋ were initially set to small random values

using a Gaussian distribution with zero mean and a standard deviation of 0.1% of

signal ranges which represents the system noise. Note that the control parameters

(i.e., synaptic weights) of ICO learning and continuous actor-critic RL were initially

set to 0.0. During a run each trial started with a given initial state and ended either

in “success” (which occurs when the pole is kept in balance for at least 5x104

time steps or 500 seconds) or “failure” (which occurs when the pole falls 12 deg to

either side or the cart moves 2.4 m to either side). Runs at each initial condition

were terminated on failure or when a successful trial was achieved or the maximum

number of trials was reached (here 1000 trials). The system was reset to the same

initial state at failure. We repeated this for 25 experiments at each initial condition.

The performance of combinatorial learning is shown in Fig. 6a. It can be seen

that this learning mechanism was able to find successful control policies which can

balance the pole and avoid the ends of the interval in a very large (x, θ)–domain

of initial conditions (see Fig. 6a). The system was successfully stabilized for ≈ 96%

of all initial conditions. This is because, on one hand, ICO learning utilizes the
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exploration strategy of continuous actor-critic RL to explore its parameter space

such that a proper weight combination is obtained. At the same time continuous

actor-critic RL is also guided by the built-in reflex of ICO learning to adapt its

weights in a proper way. The remaining part (black areas), at which learning failed,

is because of physical limitation. For example, if the system stands close to the right

wall and the pole falls to the right, the cart momentum cannot be high enough to

support the pole. Thus it crashes into the wall before. The results we obtained here

are comparable to the ones shown in [49] where this work employed similar linear

control with four inputs but used an evolutionary algorithm for weight adaptation.

When only ICO learning or continuous actor-critic RL alone was applied, sta-

bilizing the system was accomplished in smaller domains. For ICO learning alone,

the system was balanced for ≈ 75% of all initial conditions (see Fig. 6c). This is

because ICO learning cannot explore the entire parameter space due to the lack of

an exploration mechanism and it even cannot predict many steps into the future.

It basically develops its weights (i.e., control parameters) with respect to an imme-

diate correlation between predictive and reflex signals. In this setup, the built-in

reflex occurs only at the last moment that the pole falls or the cart hits the wall.

Therefore, at initial conditions in which the system fails, the reflex signal cannot

produce a strong cart momentum to turn the pole into an upright position or keep

it balance for a certain period of time (i.e., avoiding the reflex). Thus, ICO learn-

ing cannot obtain a proper correlation between the predictive and reflex signals to

achieve a proper weight combination. For continuous actor-critic RL alone, due to

the lack of a prior knowledge, the system was balanced for ≈ 91% of all initial con-

ditions (see Fig. 6b). This experimental result shows that, among the three learning

mechanisms, combinatorial learning, which combines ICO learning and continuous

actor-critic RL, was the best approach with respect to the success rate.

Note that, due mainly to the stochastic process of continuous actor-critic RL

and partly to the introduced system noise which can easily destabilize the system,

combinatorial learning and continuous actor-critic RL alone sometimes had diffi-

culty or failed to find successful control policies in a given number of trials at, e.g.,

x = −2.0 m, θ = 12 deg and around x = 0.0 m, θ = 0 deg, respectively. In contrast,

ICO learning alone was almost 100% success at these initial conditions and even

showed the very clear boundary between white and black areas (see Fig. 6c) since

it is deterministic control where no exploration is involved.

To compare the learning speed of these three learning mechanisms in gen-

eral cases, we observed their performance at a noncritical initial condition (e.g.,

x = 1.0 m, θ = −1 deg), where they all can find successful control policies, and at a

critical initial condition (e.g., x = −1.8 m, θ = −5 deg) where combinatorial learn-

ing and continuous actor-critic RL can find the policies but ICO learning cannot.

The result is shown in Fig. 7.

At the noncritical initial condition ICO learning was fastest, combinatorial learn-

ing was slower, and continuous actor-critic RL was the slowest (see Fig. 7a). At the

critical initial condition ICO learning failed while continuous actor-critic RL suc-
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control area (≈ 91%) of continuous actor-critic RL. (c) Successful control area (≈ 75%) of ICO
learning. Black areas represent a domain in which learning failed to solve the problem (i.e., it cannot

learn to stabilize the system). A gray scale bar presents the success rate; i.e., the percentage of
success from 25 experiments. Recall that “success” means the pole is kept in balance for at least

500 seconds.
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total learning trials at the noncritical initial condition (x = 1.0 m, θ = −1 deg). (b) Success rate

according to total learning trials at the critical initial condition (x = −1.8 m, θ = −5 deg). At this
critical initial condition, ICO learning failed because during learning its weights grew more and

more. Thus, the output of ICO learning, applied to the cart-pole system, also strongly increased.

As a result, the output disturbed the system rather than balancing it. Note that we did not limit
the output. Recall that success rate is calculated from the percentage of success in the total 25
experiments after a certain number of trials where “success” means the pole is kept in balance for

at least 500 seconds. Dashed lines indicate the average of the total learning trials at success.

ceeded but required more learning trials compared to combinatorial learning. This

experiment suggests that the fast convergence property of combinatorial learning

is generally derived from ICO learning which can quickly learn to find a solution

for a task but cannot properly learn solving a difficult task (i.e., here, stabilizing

the system at a critical initial condition). Furthermore, the capability for solving a

difficult task is basically obtained from continuous actor-critic RL which learns the

task but usually takes many learning trials.
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To better understand why the combined mechanism outperforms either ICO

learning or continuous actor-critic RL alone, we also observed learning curves at

a critical initial condition (e.g., x = 2.1 m, θ = 11 deg) at which its individual

components failed. Figure 8 shows that control parameters (i.e., synaptic weights)

converged to fixed values when combinatorial learning was used (see thick lines in

Figs. 8a and b). This is because ICO learning and continuous actor-critic RL tried

to find a proper weight combination such that a proper force is generated to push

the cart for balancing the pole. This proper combination can be seen when the

weight for one input in ICO learning increased and that in continuous actor-critic

RL network decreased (e.g., ρx, wx in Fig. 8).

The behavior of the system controlled by all converged weights is shown in

Fig. 9. Due to the proper weight combination, at the beginning a proper positive

force was generated to push the cart to the right such that the pole could swing to

the left to obtain an upward position. Afterwards, a negative force was generated to

balance the pole and push the cart to the center. Finally, the system was stabilized

at the center where all inputs were converged to zero values, thereby no force was

generated. As a result, the pole was successfully balanced. If the converged weights

of the ICO learning module were only used to control the system while the weights

of the continuous actor-critic RL module were set to 0.0, the controller produced a

very strong positive force to the cart at an early state. As a consequence, the pole

fell to −12 deg (see Fig. 10). On the other hand, if the converged weights of the

continuous actor-critic RL module were only used to control the system while the

weights of the ICO learning module were set to 0.0, the controller produced a very

strong negative force at an early state, thereby making the pole quickly fall to 12

deg (see Fig. 11). For these two cases, the system could not be stabilized since the

forces were not properly generated.

When ICO learning alone (see transparent lines in Fig. 8a) was used to learn

to balance the pole at the critical initial condition (x = 2.1 m, θ = 11 deg), its

control parameters diverged since the reflex signal cannot be avoided (i.e., the pole

always fell). Although ICO learning is designed to learn to avoid a reflex signal, in

this pole balancing setup the built-in reflex occurs only at the last moment that

the pole falls or the cart hits the wall. Therefore, in this difficult situation, a reflex

signal cannot produce a strong cart momentum to turn the pole into an upright

position or keep it balance for a certain period. Thus ICO learning cannot obtain a

proper correlation between the predictive and reflex signals; thereby its weights just

increased more and more to try to find any proper weight combination. However,

in this situation such a combination leading to a proper force cannot be achieved.

While the weights were increasing, the output of ICO learning, applied to the cart-

pole system, also increased. As a result, at some point the output disturbed the

system rather than balancing it. In the case of continuous actor-critic RL alone

(see transparent lines in Fig. 8b), the control parameters changed a lot due to the

stochastic process employed which tried to search for a successful control policy.

Note that at the early state of learning the weights of the ICO learning module in
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Fig. 8. Learning curves at a critical initial condition (x = 2.1 m, θ = 11 deg). (a) Weight changes

in ICO learning. (b) Weight changes in continuous actor-critic RL. Thick lines present the weight

changes in each learning mechanism in the combinatorial learning framework while transparent
lines show the weight changes when only ICO learning or continuous actor-critic RL was used.

Using combinatorial learning, the weights became stable after around 6500 time steps (or 70 trials)

meaning that the system was successfully stabilized. In contrast, the weights diverged when only
ICO learning (see (a)) was used while they changed a lot in the case of continuous actor-critic RL

alone (see (b)). Note that sudden change in wx occurred (e.g., around 4400 steps) because there
was a high correlation between the TD error and the input (x) while there were low correlations

between the other inputs and the TD error. Here, ρx = ρ1, ρẋ = ρ2, ρθ = ρ3, ρθ̇ = ρ4, wx = w1,

wẋ = w2, wθ = w3, wθ̇ = w4.

combinatorial learning became larger than the weights of ICO learning alone due

to the stochastic process of the continuous actor-critic RL module in combinatorial

learning. It can easily destabilize the system. Thus, the pole can often fall at the

early state. This leads to the triggering of a reflex signal. On the other hand, in the

case of ICO learning alone the pole fell less often at the early state such that the

weights grew slower.

Finally, we investigated interactions between these two learning mechanisms.

We first started one learning mechanism and then after a number of learning tri-

als (e.g., 100 trials) we activated the other one (see Fig. 12). This is to observe

two effects: 1) Can a later activated learning mechanism assist an earlier activated

learning mechanism for policy improvement? and 2) Can the earlier one provide an

appropriate developed control policy to the later one such that a successful control

policy can still be achieved at the end?
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Fig. 9. States of the cart-pole system (x, ẋ, θ, θ̇) and the force under control of the learned weights
(ρx ≈ 8.0774, ρẋ ≈ 1.8395, ρθ ≈ 4.2815, ρθ̇ ≈ 3.0069, wx ≈ −2.5790, wẋ ≈ 1.9225, wθ ≈ 2.4527,

wθ̇ ≈ 3.2216, cf. Fig. 8) for the critical initial condition x = 2.1 m, θ = 11 deg. A series of photos

visualizing the cart-pole behavior at particular points is shown above.

Figures 12a and b show learning curves when continuous actor-critic RL was first

started and followed by ICO learning after 100 trials (see dashed line in Fig. 12a). It

can be observed that after around 5500 time steps (or 130 trials), where ICO learning

was already activated, the weight (wx) of continuous actor-critic RL started to

gradually change its growing direction into a different way (cf. thick line in Fig. 8b).

A similar effect also appears for the weight (wẋ) after around 9000 time steps (or 190

trials). This is because ICO learning can quickly find a correlation between a state

and an unwanted condition (i.e., pole falls) and additionally generates the proper

action when the pole falls through its built-in reflex. Thus, it can extract important

featuresc serving to guide the learning strategy of continuous actor-critic RL. As a

result, the weights of continuous actor-critic RL (e.g., wx, wẋ) gradually changed

to their appropriate directions but they did not change considerable compared to

continuous actor-critic RL alone (see transparent lines in Fig. 8b).

Another interesting effect of the interaction is shown in Figs. 12c and d where

ICO learning was first started and followed by continuous actor-critic RL after 100

trials (see dashed line in Fig. 12d). After 115 trials (or around 2500 time steps),

cBy feature we mean the combination between the weights and input signals.
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Fig. 10. States of the cart-pole system (x, ẋ, θ, θ̇) and the force under control of the learned

weights (ρx ≈ 8.0774, ρẋ ≈ 1.8395, ρθ ≈ 4.2815, ρθ̇ ≈ 3.0069, (see Fig. 8a)) for the critical initial
condition x = 2.1 m, θ = 11 deg. We set wx, wẋ, wθ, and wθ̇ to 0.0.

the pole did not fall anymore leading to reflex avoidance. As a consequence, the

weights of ICO learning converged. However, the weights of continuous actor-critic

RL still slightly changed due to the TD error. They finally converged (i.e., TD

error ≈ 0) after around 17600 time steps. This experiment shows that, on the one

hand, continuous actor-critic RL seems to highly influence ICO learning such that

the weights of ICO learning became stable shortly after continuous actor-critic RL

was activated. On the other hand, ICO learning seems to provide an adequate

control policy or an important feature to continuous actor-critic RL such that it

can quickly adapt its weights to appropriate directions leading to convergence.

5.2. Goal-Directed Behavior Control

Next, we present the performance of combinatorial learning (see Fig. 4) on a dif-

ferent task. Here, we employed it to a goal-directed behavior control problem. The

task was to steer a wheeled mobile robot to move towards and finally approach a

desired object (i.e., its goal) in a given time. In this scenario, we put the robot in

a square area where one desired green object and one undesired blue object were
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Fig. 11. States of the cart-pole system (x, ẋ, θ, θ̇) and the force under control of the learned

weights (wx ≈ −2.5790, wẋ ≈ 1.9225, wθ ≈ 2.4527, wθ̇ ≈ 3.2216, (see Fig. 8b)) for the critical
initial condition x = 2.1 m, θ = 11 deg. We set ρx, ρẋ, ρθ, and ρθ̇ to 0.0.

provided. We used the physics simulator LPZROBOTSd to simulate the robot and

its environment (see Fig. 13). The simulator was implemented on a desktop PC

with an update time step of 0.01 s.

The mobile robot system provides four state variables, which are two relative

orientations (φG,B) and two relative positions (DG,B) of the robot to the locations of

the green (G) and blue (B) objects, and additional eight state variables of infrared

(IR) sensors for boundary detection (see Fig. 13). φG,B provide information of how

much the robot’s direction deviates from the objects. They vary in the interval

[−180◦, 180◦] (see Fig. 13b) and show continuous values. If the objects are directly

in front of the robot, φG,B show 0. If they are to the left of the robot, φG,B show

negative values. If they are to the right of the robot, φG,B have positive values (cf.

Fig. 13b). DG,B provide information of how close the robot is to the objects. They

are mapped onto the interval [0, 1], with 0 representing near, and +1 representing

far. If the robot comes close to an object in a certain range (i.e., DG,B > 0.7,

see dashed areas in Fig. 13c), a reward is given for continuous actor-critic RL and

a reflex signal is triggered for ICO learning. The IR sensory signals are mapped

dIt is based on the Open Dynamics Engine (ODE) for more details of the LPZROBOTS simulator
see http://robot.informatik.uni-leipzig.de/software/.
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Fig. 12. Learning curves at a critical initial condition (x = 2.1 m, θ = 11 deg) when ICO learning

and continuous actor-critic RL were not activated at the same time. (a), (b) Weight changes of
ICO learning and continuous actor-critic RL in the combinatorial learning framework. In this

experiment, ICO learning was activated after 100 trials (dashed line). (c),(d) Weight changes of

ICO learning and continuous actor-critic RL where here continuous actor-critic RL was activated
after 100 trials (dashed line).

onto the interval [−1, +1], with −1 representing no boundary detection, and +1

representing hitting a boundary. This IR information was only used to reset the

robot position on hitting a boundary.

It is important to note that in this setup, only φG,B were used as inputs (i.e., the

state) to the control policy while DG,B were used only to generate reward and reflex

signals for learning and to reset the robot position when approaching an object (i.e.,

DG,B > 0.95). Thus, the robot has insufficient sensor data for reliably identifying

its state in the environment. Furthermore, φG,B overlap with each other; i.e., the

robot simultaneously senses its relative orientation to the locations of both objects

in the whole area. Thus, both sensor signals try to steer the robot towards the

corresponding objects once their synaptic weights have been developed.

Here, for ICO learning, φG,B were used as predictive signals (x1,2, see Eq. 1).

Two independent reflex signals were configured: One was for the green object (x0G ,

see Eq. 1) and the other for the blue one (x0B , see Eq. 1). They depend on the

orientations (φG,B) and the positions (DG,B) of the robot to the objects. The reflex

signals are triggered as soon as the robot comes close to the objects (i.e., entering

areas inside the dashed circles as shown in Fig. 13c), and 0 otherwise. In fact,
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Fig. 13. Simulated mobile robot system for a goal-directed behavior control task. (a) The mobile

robot with different types of sensors (i.e., relative orientation φ and position D sensors and infrared
IR sensors). (b) The variation of the relative orientation φG of the robot to the green object. (c)

The environmental setup of the robot. The black dot represents the starting or reset position
where the robot was initially started or reset after it hit a boundary or reached one of the objects.

Dashed circles show areas where a positive (+1) or negative reward (−1) was given for continuous

actor-critic RL and reflex signals were triggered for ICO learning (see text for details).

the reflex signals elicit a turn which is proportional to the deviations defined by

φG,B ; i.e., the larger the deviations, the sharper the turn. Thereby, they turn the

robot towards the objects. In other words, ICO learning tries to control the heading

direction of the robot to align with an object. This way, it can implicitly optimize

the behavior over the entire path. Since the green and blue objects are far from

each other, the reflex areas do not overlap; thus, the two reflex signals cannot be

triggered at the same time. We set the learning rate (µ, see Eq. 2) of ICO learning

to 0.005. The weights (ρ1,2, see Eq. 2) were initially set to 0.0. They change only if

the positive derivatives of the reflex signals are higher than a threshold, otherwise

they remain unchanged. For example, when the robot comes close to the green

object and the reflex signal is triggered, the weight (ρ1) of the orientation signal

with respect to the green object increases while the weight (ρ2) of the blue one

remains unaffected and vice versa when the robot comes close to the blue object.

For continuous actor-critic RL, we allocated four bases for φG and φB each. This

leads to 4x4 = 16 bases employed as the centers of the critic network. Thus, the

network has in total 16 hidden neurons (M = 16, see Eqs. 6 and 7) which cover

the state space of the system. The size or width of the Gaussian basis functions

was simply set to twice the distance between its center and the center of its nearest

neighbor. The reward signal (R, see Eq. 9) was set to +1 when the robot came close

to the green object (desired object or goal) and −1 to the blue object (undesired

object). In order to promote exploration, we used low-pass filtered noise for low-

frequency probing which was appropriate for the robot. We also used the modulation

scheme for controlling the exploration level where ξ, Vmax and Vmin were here set

to 5.0, 50 and 0, respectively. In addition to this scheme, the exploration term
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was exponentially reduced as soon as the performance improved (i.e., the robot

frequently approached the goal). The control parameters α (see Eq. 5), λ (see Eq. 8),

τ (see Eq. 9), and ζ (see Eq. 10) were set to 0.001, 0.7, 0.2, and 0.5, respectively.

The weights (w1,2, see Eq. 3) were initially set to 0.0 and changed by Eq. 5.

We let the combinatorial learning mechanism learn to steer the robot to approach

the desired goal (i.e., the green object). Without control, the robot randomly moved

around. During a run in each trial, the robot started at a specific location (i.e., the

black dot shown in Fig. 13c). A run was terminated when the robot approached

one of the objects or hit a boundary as well as when simulation time was above 15

seconds. After termination, the robot was reset to the same starting location with

a random orientation in the interval [−45◦, 45◦]. We repeated this 50 experiments

where each experiment was terminated after 200 trials. The performance of com-

binatorial learning compared to ICO learning and continuous actor-critic alone is

shown in Fig. 14.
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Fig. 14. Comparison of the performance of three learning mechanisms. (a) Success rate in a total

of 50 experiments. Here, “success” means that the robot can approach the green object from the

starting position with different random orientations in the interval [−45◦, 45◦] (cf. Fig. 13c). (b)
Average of the total learning trials at success.

As can be seen, combinatorial learning had the highest success rate, continuous

actor-critic RL a lower one, and ICO learning the lowest. With respect to the number

of learning trials, combinatorial learning and ICO learning were not significantly

different. However, they were substantially faster than continuous actor-critic RL.

Among these learning mechanisms, combinatorial learning was the best approach,

showing highest success rate with the lowest number of learning trials.

To better understand why the combinatorial learning mechanism outperforms

its individual components in this task, we also plotted learning curves. Figure 15

exemplifies the learning curves showing the changes of the control parameters (i.e.,

synaptic weights) of ICO learning and continuous actor-critic RL in combinatorial

learning. The weights converged to fixed values (see thick lines in Figs. 15a and b)
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Fig. 15. Learning curves of a goal-directed behavior. (a) Weight changes in ICO learning. (b)
Weight changes in continuous actor-critic RL. Thick lines present the weight changes in each

learning mechanism in the combinatorial learning framework while transparent lines show the
weight changes when only ICO learning or continuous actor-critic RL was used. Using combinato-

rial learning, the weights became finally stable after around 75000 time steps (or 50 trials) meaning

that the robot can successfully approach the goal. In contrast, the weights sometimes converged
to other fixed values in the case of ICO learning alone (see (a)) producing an undesired behavior

(i.e., the robot went to a blue object) while they sometimes changed a lot in the case of continuous

actor-critic RL alone (see (b)). Note that here ρφG = ρ1, ρφB = ρ2, wφG = w1, wφB = w2.

resulting in a goal-directed behavior. The input and output signals during this

learning experiment and the behavior of the system after the weights converged are

shown in Fig. 16.

When only ICO learning was used, the weights sometimes converged to other

fixed values (see transparent lines in Fig. 15a) producing an undesired behavior;

i.e., the robot moved towards the undesired blue object instead of the desired green

object. When only continuous actor-critic RL was used, the weights sometimes

changed a lot to negative values (see transparent lines in Fig. 15b). As a conse-

quence, the robot moved away from the objects. However, they will finally converge

but this will require a lot of learning trials, e.g., > 600 trials.

In principle, ICO learning can recognize a correlation only between its inputs

(i.e., predictive and reflex signals, cf. Fig. 1) without recognizing a goal (i.e., reward

or punishment). Thus, for this task it can only generate an anticipatory reaction

towards objects, rather than a goal-directed behavior. On the other hand, continu-

ous actor-critic RL can achieve this in most cases but requires more learning trials

than ICO learning. By contrast, combinatorial learning allows ICO learning and

continuous actor-critic RL to complement each other leading to control policy im-
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Fig. 16. (a) States of the mobile robot system (φG,B) and the output (OCOM ) during learning.

Learning curves belonging to these signals are shown in Fig. 15 (see thick lines). (b) Robot tra-

jectories observed from around 28x104 to 30 x104 time steps (see gray area in (a)). Positive and
negative values of the output means turning right and left, respectively. At the beginning the robot

explored a lot (i.e., large amplitude of the output signal). After learning converged, the robot did
not turn much (i.e., small amplitude of the output signal). It only turned if it deviated from the
goal. As a result, it always approached the goal (green object). In other words, the learned control
policy drove the robot towards the goal and kept it away from the blue object; thereby, φB shows

most of the time negative values above 90 deg (i.e, heading away from the blue object) while φG
shows most of the time positive values around 90 deg (i.e., turning towards the goal).

provement (high success rate and fast convergence (see Fig. 14)). This is because

continuous actor-critic RL tries to drive a robot towards a goal with a certain de-

gree of exploration. At the same time, ICO learning tries to limit the exploration

area (i.e., guiding) since it tries to drive the robot towards the point of interest

(green or blue object) defined by a prior knowledge. Without ICO learning, due to
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the exploration, the robot sometimes has difficulties to go back to the goal or it

requires more trials. In addition ICO learning can also shape the learning process

such that the robot can approach the goal on a short path (see below).

To see the guiding and shaping effects from ICO learning, we took the devel-

oped weights of ICO learning and continuous actor-critic RL before convergence

occurred to control the robot and observed its behavior. Then, we compared the

behavior to the one controlled by only the developed weights of continuous actor-

critic RL; i.e., we set the weights of ICO learning to 0.0 while the weights of con-

tinuous actor-critic RL remained unchanged. Interestingly, we found three different

behaviors (I, II, III, see Figs. 17–19). Recall that in these goal-directed behavior

experiments, the two relative orientations (φG,B) overlap with each other; i.e., the

robot simultaneously sensed its relative orientations to the locations of both ob-

jects in the whole area. In addition, for continuous actor-critic RL a positive reward

(+1) was given when the robot got into the circle around the green object while a

negative reward (−1) was given when the robot got into the circle around the blue

object (see Fig. 13c). Thus, during learning as long as the exploration term and the

TD error existed, the weights of both signals simultaneously changed, no matter

where the robot was.

Figure 17 shows the first behavior I where we took the developed weights at

around 3x104 time steps (see dashed line in Figs. 17a and b), slightly before the

weights of continuous actor-critic RL became stable, to test the robot. It can be

seen that the robot always moved towards the desired green object (see Fig. 17c)

when the developed weights of ICO learning and continuous actor-critic RL were

used. On the other hand, it sometimes moved to the undesired blue object or went

straight when only the developed weights of continuous actor-critic RL were used

(see Fig. 17d) because of exploration as well as a large weight wφB . Note that ρφB
did not become large since when the robot approached the blue object it did not

deviate much from the object. Thus, the positive derivative of the reflex signal was

smaller than threshold, thereby ρφB remained unchanged. This experimental result

shows that ICO learning complemented continuous actor-critic RL leading to goal-

directed behavior. In other words, ICO learning guided a learning strategy enabling

continuous actor-critic RL to exploit more the positive reward. As a consequence,

convergence finally occurred.

Figure 18 shows the second behavior II where we took the developed weights

at around 20x104 time steps (see dashed line in Figs. 18a and b), slightly before

the weights of continuous actor-critic RL reversed their growing directions, to test

the robot. At this point, it can be seen that when the developed weights of ICO

learning and continuous actor-critic RL were used the robot always approached the

undesired blue object (see Fig. 18c) where the negative reward (−1) was given.

Thus continuous actor-critic RL could use this reward signal to correct its current

control policy. This effect can be observed from the weights of continuous actor-

critic RL which significantly reversed their growing directions at around 20x104

time steps or 2000 seconds. On the other hand, when only the developed weights
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Fig. 17. Learning curves and robot behaviors I. (a), (b) Weight changes of ICO learning and
continuous actor-critic RL in the combinatorial learning framework. Dashed line shows the point

(i.e., around 3x104 time steps or 300 seconds) where the weights of ICO leaning and continuous
actor-critic RL were used to test the robot. (c) Trajectories of the robot from the starting position

with different random orientations in the interval [−45◦, 45◦]. (d) The trajectories when ICO

learning control policy was switched off; i.e., we set the weights of ICO learning to 0.0 while the
weights of continuous actor-critic RL remained unchanged. Note that during the test we removed

the exploration term from the controller in order to clearly see the trajectories.

of continuous actor-critic RL were used, the robot always moved away from the

objects (see Fig. 18d). Therefore, in this situation continuous actor-critic RL had

difficulty to obtain any reward signal to correct its current control policy. Due to the

stochastic process employed, which tried to search for a successful control policy,

the weights might change to a large degree (see transparent lines in Fig. 15b). As a

result, continuous actor-critic RL might fail to solve the task in a given number of

trials (here, maximal 200 trials). This result suggests that ICO learning shaped or

guided the learning strategy of continuous actor-critic RL such that it can receive

a reward (i.e., here a negative one). Then it used this reward to correct the current

control policy. As a consequence, convergence finally occurred.

Figure 19 shows the third behavior III where we took the developed weights

at two states to test the robot. The early state was around 75x103 time steps

where only the weights of continuous actor-critic RL became stable (see dashed

line State I in Figs. 19a and b). They were stable since the exploration term was

zero. Recall that the exploration term was exponentially reduced as soon as the

performance improved (i.e., the robot frequently approached the goal). The later
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Fig. 18. Learning curves and robot behaviors II. (a), (b) Weight changes of ICO learning and
continuous actor-critic RL in the combinatorial learning framework. Dashed line shows the point

(i.e., around 20x104 time steps or 2000 seconds) where the weights of ICO leaning and continuous

actor-critic RL were used to test the robot. (c) Trajectories of the robot from the starting position
with different random orientations in the interval [−45◦, 45◦]. (d) The trajectories when the ICO

learning control policy was switched off; i.e., we set the weights of ICO learning to 0.0 while the
weights of continuous actor-critic RL remained unchanged. Note that during the test we removed

the exploration term from the controller in order to clearly see the trajectories.

state was around 50x104 time steps where the weights of ICO leaning became also

stable (see dashed line State II in Figs. 19a and b). It can be seen that the robot

moved towards the goal in long trajectories (see Fig. 19c) when the control policy

at the early state was used. In contrast, it moved on shorter trajectories when the

control policy at the later state was used (see Fig. 19d). This suggests that although

continuous actor-critic RL was stopped due to the inhibition of its exploration term,

ICO learning still shaped the control policy. This is because the reflex signal was

not completely avoided since the robot still had large deviations to the goal when

it came close to it. As a consequence, ICO learning improved robot performance by

making it head directly to the goal, thereby leading to shorter trajectories.

It is important to note that although the resulting weights of the experiments

shown in Figs. 15 and 17–19 converged to different values, they generally converged

to almost the same weight ratio (
ρφG+wφG
ρφB+wφB

) of 2.9± 0.6. This shows that in combi-

natorial learning the combination of the weights of these two modules is necessary

to successfully solve the task. Using all learned weights even yields a better re-

sult (i.e., the robot moved on the shortest trajectories) compared to using only the

learned weights of either the ICO learning module or the continuous actor-critic
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Fig. 19. Learning curves and robot behaviors III. (a), (b) Weight changes of ICO learning and

continuous actor-critic RL in the combinatorial learning framework. Dashed lines show two states
where the weights of ICO leaning and continuous actor-critic RL were used to test the robot.

State I was around 75x103 time steps or 750 seconds and state II was around 50x104 or 5000

seconds. (c) Trajectories of the robot from the starting position with different random orientations
in the interval [−45◦, 45◦] at state I. (d) The trajectories at state II. Note that during the test

we removed the exploration term from the controller in order to clearly see the trajectories.

RL module (see Fig. 20). In addition, the weight ratio also suggests that the posi-

tive reward attracts the system approximately three times larger than the negative

reward repulses it.

6. Discussion and Conclusions

In the following, we will discuss some remaining issues while other relevant discus-

sion points have been treated alongside the experimental section above.

In this study, we introduced a neural combinatorial learning model for policy im-

provement. The learning model combines ICO learning and continuous actor-critic

RL in a parallel manner where the ICO learning output and the continuous actor-

critic RL output are equally weighted to control the agent. The equal contribution

used here is a simple and straightforward strategy for combining them (see Eq. 10).

In general, ICO learning alone can quickly learn to solve tasks but has limitations

for more difficult tasks (i.e., here, balancing the pole in critical initial conditions as

well as goal-directed behavior). On the other hand, pure continuous actor-critic RL

can often solve the tasks but learns slowly.

Mainly we found that the performance of the controller can be strongly improved

when the combinatorial learning model was applied. To make this model work
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a) b) c)

Fig. 20. Robot behaviors at three different control parameter setups of combinatorial learning.

For our investigation here, we used the learned weights from the experiment shown in Fig. 19,

i.e., the weights at State II. (a) All learned weights were used, i.e., ρφG ≈ 0.245, ρφB ≈ 0.036,
wφG ≈ 0.224, wφB ≈ 0.117. (b) Only learned weights of the ICO learning module were used while

the weights of the continuous actor-critic RL modules were set to 0.0. (c) Only learned weights

of the continuous actor-critic RL module were used while the weights of the ICO learning module
were set to 0.0. Note that in each test the robot started from the starting position with different

random orientations in the interval [−45◦, 45◦] and we removed the exploration term from the

controller in order to clearly see the trajectories.

properly we need to design a proper reflex for ICO learning as well as an appropriate

correlation between predictive and reflex signals. For example, in the pole balancing

task we configured ICO learning such that the weights were changed only for the

positive derivatives of the reflex signal, otherwise they remained unchanged. This is

to avoid a negative correlation resulting in poor learning performance or even failure.

Another condition which would make the current form of the model problematic

is a strong conflict between the reward function and the reflex. Some problematic

cases would be:

(1) The first case is if continuous actor-critic RL moves the agent towards a target

due to the reward function, while ICO learning tries to move it away from it

due to the built-in reflex.

(2) Another case is robot navigation in an environment with obstacles when ICO

learning is used to generate a negative tropism behavior (e.g., avoiding obsta-

cles) while continuous actor-critic RL is used to generate a positive tropism

behavior (e.g., approaching a goal). In this scenario, a conflict will occur when

the goal is behind an obstacle or directly close to it.

(3) The last case is a dynamic motion control task like balancing a humanoid robot

(many degrees of freedom system) against an external disturbance (pushing)

where ICO learning controls the robot to avoid pushing (e.g., leaning action)

while continuous actor-critic RL wants to keep it balance (e.g., upright posi-

tion).
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However, these complex tasks might also be solved but this will require a mod-

ification of the model or an improvement by:

(1) properly designing the reward function of continuous actor-critic RL and the

reflex of ICO learning,

(2) using more appropriate sensory signals or predictive signals,

(3) transforming the low-dimensional input of the actor part into a higher dimen-

sional one by using nonlinear functions (e.g., an RBF network [46]) or using a

decoder [7],

(4) using an adaptive critic network or another type of a critic network (e.g., a self-

adaptive reservoir computing network [14] having high dimensional nonlinear

dynamics and internal memory) for a better approximation of the value func-

tion. These issues (1-4) are still under investigation and go beyond the scope of

this paper.

Besides our approach, there are a number of investigations on combining con-

ventional RL with other (learning) mechanisms or applying other adaptive methods

to it in order to enhance learning capability, reduce learning time, or counteract the

curse of dimensionality. For example, Price and Boutilier [54] developed an imitation

model called “implicit imitation” and integrated it into RL. It basically combines its

own experience with its observations of the behavior of an expert mentor for learn-

ing. Doya [18] proposed hybrid RL based on the “actor-tutor” framework, which

uses a model of the system dynamics as the tutor part. There, the actor (or con-

troller) is trained by supervised learning to minimize the difference between its out-

put and the tutor’s output (desired output). This framework, basically resembling

“feedback error learning” [23], was applied to nonlinear control tasks. Centina [12]

introduced a supervised reinforcement learning (SRL) architecture for robot control

problems with high dimensional state spaces. There, a behavior model learned from

examples is used to dynamically reduce the set of actions available from each state

during the early RL process. In addition to these, other efforts have been made by

developing advanced RL techniques [21, 31, 58] like hierarchical RL [3, 6, 9, 17,

66], by employing adaptive state representation [28, 34, 57], by using different ex-

ploration/exploitation techniques [4, 44, 60, 64], and by introducing algorithms for

shaping rewards [2, 16, 48]. While all these advanced methods can successfully solve

several (robot) tasks and are effective in their own right, they are quite difficult to

match to biological neural learning and conditioning paradigms.

Only a few works have developed different types of learning models for robot

control where the models mimic principles of these learning or conditioning mech-

anisms of animal leaning [1, 13, 65]. Alonso et al. [1] introduced the associative

learning based approach (called the Pavlovian and Instrumental Q-learning frame-

work) to deal with generalization in Q-learning. This approach improves RL (i.e.,

Q-learning) by applying the Rescorla-Wagner model [56] as a part of the control

scheme for stimulus-stimulus associations. Its performance was tested in a Grid

simulator where agents have to approach or avoid appetitive and aversive stimuli.
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Chang and Gaudiano [13] presented a neural network based on operant and classical

conditioning. It was tested on mobile robots. As a consequence, it allows the robots

to simultaneously learn to approach light sources and avoid obstacles. Touretzky

and Saksida [65] developed a model of operant conditioning that incorporates as-

pects of chaining in which behavioral routines are built up from smaller action

segments. The model was implemented on a mobile robot for solving the Delay

Match to Sample task (i.e., the task that involves behavioral sequences). Although

all these learning models [1, 13, 65] employed learning and conditioning aspects of

animal learning, they did not show or provided an understanding of how different

mechanisms interact or complement each other, resulting in successful control poli-

cies. Instead, they were developed for improving conventional RL models or solving

particular robotic tasks (i.e., goal-directed behavior control). Therefore, it is still

unclear whether these models can also deal with qualitatively different tasks, like

dynamic motion control.

Compared to many of these approaches just summarized, our combinatorial

learning model applied the principles of classical and operant conditioning of ani-

mal learning. It was developed using ICO learning (a simplified model of classical

conditioning) and continuous actor-critic RL (a simplified model of operant con-

ditioning). They were implemented based on artificial neural networks; thereby,

making them conceptually closer to biological systems compared to any other solu-

tion. Furthermore, ICO learning and continuous actor-critic RL are partially related

to neural learning mechanisms in the brain. Specifically, ICO learning implements

plain heterosynaptic plasticity associated with modulatory processes found in the

brain [27] and continuous actor-critic RL uses TD learning which is related to

dopaminergic responses in the brain. Especially, some cells in the substantia nigra

and ventral tegmental area (VTA) show a behavior similar to representing the error

of TD-learning [61], which we use for weight adaptation in actor and critic networks.

We demonstrated the capability of this model in solving two different tasks: Pole

balancing and goal-directed behavior control. This shows that the learning model

is not limited to a specific task.

In addition to this, our model can be considered as a model-free method since its

learning rules do not require a system or environment model. Instead, ICO learning

requires only a built-in reflex as a self-supervised mechanism to quickly find the

correlations between a state and an unwanted condition (i.e., reflex action), while

continuous actor-critic RL uses its prediction mechanism including its own experi-

ences and some exploration to obtain a good control policy. Although our models

use a fixed state representation in the critic, one could also extend the critic to adap-

tive state partitioning [45] since the actor and critic are independently constructed.

Our work also shares a connection to Kolter and Ng [33] where they presented a

policy gradient method called the “Signed Derivative” approximation. The general

concept of this approach is similar to our model in the sense that it is a model-

free method which uses intuition to guess the direction where control inputs affect
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future state variables. This intuition is used to construct the Signed Derivative ap-

proximation which is directly applied to the update rule of RL. Generally speaking,

the Signed Derivative approximation can be viewed as an instance of the built-in

reflex of ICO learning. However, in our model the built-in reflex indirectly affects

RL through ICO learning since it is used to guide and shape learning.

In summary, the study pursued here sharpens our understanding of how different

learning mechanisms (i.e., correlation-based learning and RL) can be appropriately

combined and how they complement each other leading to policy improvement.

This study also suggests that correlation-based learning, on the one hand, can be

used to speed up the learning process of RL. On the other hand, it can shape and

correctly guide RL for searching an optimal policy. While the proposed combina-

tion of these two learning mechanisms can improve the performance of the systems,

they are still combined in a simple way (see Eq. 10). Thus, for future work, we

will investigate adaptive combinations. One possible option is to employ a learning

mechanism based on a correlation between a direct reward signal and the outputs of

ICO learning and continuous actor-critic RL for adapting their output weights. This

way, an active output will have a high correlation with the reward signal; thereby

strengthening its weight. The output weights will finally determine the behavior

of the agent. Another option is to use a hierarchical RL framework [46] to find an

optimal combination. Furthermore, we will also apply the combinatorial learning

mechanism to more complex tasks, like the double-pendulum scenario [22, 29, 30],

including ones with high dimensional states and actions (e.g., helicopter control [36]

and octopus arm problems [69]). We also aim to use it as online learning for real

robotic tasks, e.g., adaptive walking of hexapod robots [41], dynamic motion con-

trol of biped robots, and real robot navigation in complex environments. However,

solving such tasks may require a modification of some components, e.g., using a

nonlinear actor and/or an adaptive critic network, which could be easily done due

to the modularity of the framework.
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