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Patients use orthoses and prosthesis for the lower limbs to support and enable

movements, they can not or only with difficulties perform themselves. Because
traditional devices support only a limited set of movements, patients are re-

stricted in their mobility. A possible approach to overcome such limitations is

to supply the patient—via the orthosis—with situation-dependent gait models.
To achieve this, we present a method for gait recognition using model

invalidation. We show that these models are capable to predict the individ-

ual patient’s movements and supply the correct gait. We investigate the sys-
tem’s accuracy and robustness on a Knee-Ankle-Foot-Orthosis, introducing

behaviour changes depending on the patient’s current walking situation. We

conclude that the here presented model-based support of different gaits has the
power to enhance the patient’s mobility.
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1. Introduction

Orthoses are supportive devices, which range from splints over passive, me-

chanical automatons to active components, which are equipped with their

own controller. This controller has to work in accordance with the user’s

movements. Current whole leg orthoses often control the device without

instructions from their user. The here presented Knee-Ankle-Foot-Orthosis

(KAFO) strives to support movements their user can not (or only with diffi-

culties) perform on his/her own. These orthoses are applied for a variety of

medical indications, ranging from stroke, and nerve/muscle tissue damages

to many other forms of paraplegia. They are worn in rehabilitation for a

limited time or, in many cases, constantly supporting the patient.

Because of size and weight constraints, current orthoses have limited

capacities, including computational power, pushing sophisticated control
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strategies out of reach. The existing controllers are manually tuned to fit

the patient, enabling him/her to achieve a basic set of gaits such as walking,

sitting down and stair climbing.

To support a wider range of actions, the controller needs knowledge

of the corresponding movements and the ability to differentiate between

those gaits. Methods for machine driven gait analysis and gait detection

were developed in laboratories with an observer1 or with motion tracking

systems.2 Many different approaches have been employed, including differ-

ent model based approaches on a variety of extracted features.3–5 Recently,

gait analysis has moved into devices in the vicinity of the body, like mobile

phones6 or sensors embedded in clothes, like shoes.7 These systems depend

on external information or the sampling of a complete stream of sensory

data—at least for a complete step—for post-hoc analysis. But application

in an orthosis requires immediate gait analysis.

Therefore, we focus on the use of internal models classifying the ongoing

movement to estimate the support needed at the moment. In this way,

different movements are differentiated early and supported in time.

For standing and walking,8 and walking on flat ground and slopes9 a

similar on-line approach was applied. Another investigation tested stair

descending and ascending in a finite state based controller.10

The presented approach is developed and tested on semi-active C-Leg

hardware from Otto Bock,11 which modulates the knee’s damping, and thus

allows a wide range of behaviours while maintaining low power consump-

tion, as only valves in a hydraulic system need to be actuated. Tests on a

real device ensure real world applicability of the method.

2. Methods

2.1. The device

The study has been conducted with a KAFO by Otto Bock. The device is

spanning from thigh to foot. At the knee joint, a C-LegTM-element controls

the joint’s damping properties for knee flexion with a hydraulic system. We

employed a prototype with a flexible ankle joint for the experiments in this

study. Nevertheless, the controller has been verified to work with a fixed

ankle joint, too. The orthosis was equipped with a thigh-angle, a knee-angle

and a foot pressure sensor. The latter is so sensitive that it acts as a contact

switch.
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2.2. Controller overview

Here we assume a general controller, which handles the appropriate damp-

ing for the 3D input vector of thigh-, knee-angle and foot contact. This

controller allows pursuing different gaits, like walking on flat ground or

stair climbing, for which it employs individual support. The choice of the

appropriate gait is subject to gait classification with the here presented

method (see below).

Default

Gait Models

Default

Decision Unit

Sensors

Controller EnvironmentOrthosis
gait-specific

default

Figure 1. Control flow: Gait models predict the sensory input, i.e., thigh-, knee-angle,

and foot contact. The decision unit chooses the model which minimises the error between
sensory input and prediction. The actual controller can act according to the specific gait

or according to a default mode, if no model fits the current gait. (The human figures are
based on a brochure by Otto Bock.)

For each of the supported gaits, an internal model predicts future mo-

tion. A decision unit tracks the likelihood, that the current sensory input

represents this gait. The decision unit acts on the internal models’ output

to grant control to the controller which fits the current movement best.

2.2.1. Internal gait models

Internal gait models are the basis of the gait classification system. For each

supported gait, an internal gait model is trained to predict at every moment

in time the next sensory input for the thigh- and knee-angle

pt+1 =

(
thight+1

kneet+1

)
= prediction(~st, ~st−1, . . .)

from a history of sensory input vectors st, as is shown in Fig. 2 (a). These

internal gait models are implemented with multi-layered perceptrons.12 In

our experiments a history of elements up to 20 time steps was used, ac-

counting for 1
5 s at 100 Hz sampling frequency.

Based on recorded gait data, these gait models were trained to track

the individual gait of the user and then applied to additional data sets and

tested in the running system.
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Figure 2. Left column: Gait prediction schematics in open loop condition: a flat walking

model in transitions to and from stair climbing. (a) The knee angle sensor and the
model’s prediction. (b) The low pass filtered prediction error and the threshold θi. (c) The

processed error count f on which the decision unit chooses the appropriate model. Right

column: (d) Gaits are denoted vertically; a sequence of three steps is shown along the
horizontal axis. The user’s annotations were extended to the beginning of a step and

plotted as horizontal lines of black dots. In solid blue, the trained system’s output is
shown. On the top right the red interval marks the range of certainty, which is the part of

the step with correct classification decision which precedes the heel strike. It is normalised

on the heel-off-to-heel-strike interval to gain a comparable measure. (e) Picture of the
staircase, which was used for open- and closed-loop runs.

2.2.2. Decision unit

The decision unit evaluates all model prediction errors for the thigh and

knee angles

et =

∣∣∣∣ pt − (
sthight

skneet

)∣∣∣∣
for the current time step. To reduce the influence of noise, the low pass

filtered errors ẽt are checked against a model- and angle-specific threshold.

They are ignored if they are below the threshold. Errors greater or equal

to the threshold θi are counted (see Fig. 2 (b))

f ti = α

{
f ti , if ẽti < θi

(max(f ti + 1, 2)), else
, α ∈ R, 0 < α < 1.

f describes how unfit the model is to capture the current sensory input.

To obtain a value which can be interpreted on the time scale of a step, the

capped error count f is decaying with factor α (compare Fig. 2 (c)). The

decision unit chooses from all models with unfitness values below a certain

threshold the one with the best, i.e., lowest unfitness value. This process is



March 28, 2014 17:12 WSPC - Proceedings Trim Size: 9in x 6in clawar

5

indicated with a dashed line in Fig. 2 (c). If all models produce too high

unfitness values f , the decision unit labels the current gait as unknown.

Then the existing default controller will ensure basic orthosis operation.

2.3. Walking experiments

Walking experiments were conducted by a healthy subject equipped with

the prototype. As a ground truth for evaluation of the classification ac-

curacy, the user annotated his/her current gait, such as walking on flat

ground or climbing stairs. Figure 2 (d) shows three steps of a recording.

Also recorded were the sensory input, and the decision unit’s gait classifi-

cation. Walking experiments took place indoors, along long floor passages

and stair cases over five stories.

2.4. Quantification of prediction quality

To quantify the quality of gait classification, we measured success rate and

timing, i.e., how early the correct classification occurred. Here we put a

focus on the correct classification before the heel strike, to make sure, that

in an on-line scenario the classification is available in time. We define the

range of certainty, which constitutes the consistent last fraction between

heel-off and heel strike, where the correct gait is continuously detected up

to the heel strike, as illustrated in Fig. 2 (d). A range of certainty of 100 %

therefore means, that the gait is known on heel-off. A range of certainty of

0 %, in contrast, means that the gait is not classified correctly before heel

strike.

The achieved range of certainty is depending on the individual step and

the specific gait. Thus, to explore the reliability of gait recognition we in-

vestigate (a) the average success rates for all gaits, and (b) the classification

accuracy if minimal ranges of certainty of 20 % and 3 % are required.

3. Results

The predicting models have been created with training sets sized 146 steps

for flat walking, 35 steps for stair climbing and 32 steps for descending

stairs. These training sets contained selected steps from four recordings and

included no gait transitions. For evaluation, three independent recordings

including gait transitions have been used, totalling 215 steps (81 steps on

flat ground, 64 steps mixing flat ground and stair climbing, and 70 steps

mixing flat ground and stair descending).
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Figure 3 (c) shows the dependence of the averaged classification success

rate on the chosen minimal range of certainty averaging all gait models.

While over 83 % of all steps are correctly classified at the beginning of

the step, naturally, for all other steps the success rate increases, when the

range of certainty is reduced. In this experiment, the average success rate

was slightly above 94 % at heel strike.

The distribution of the classification results can be seen in the confu-

sion matrices for required minimal ranges of certainty of at least 20 % in

Fig. 3 (a), and 3 % in Fig. 3 (b). In these matrices the annotated gait is

contrasted with the model based predictions.

In general, the classification performance is quite good for walking on

flat ground with over 94 % accuracy and 100 % for stair climbing, whereas

the performance for steps descending a stair is lower with at least 84 %.

Noticeable are comparably low frequencies of false positives classifying flat

walking as descending stairs (1 %), descending stairs as flat walking (5 %),

and flat walking as stair climbing with 5 % in the case of a 20 % range of

certainty. The success rates increase, when the range of certainty is reduced,

as detailed in Fig. 3.

≥ 20 % range of certainty ≥ 3 % range of certainty(a) (b)

(c)

required minimal range of certainty [%]
100 80 60 40 20 0

80

90

100

cu
m

u
la

ti
v
e

su
cc

e
ss

 r
a
te

 [
%

]

≥
 2

0
 %

≥
 3

 %

Figure 3. For 215 steps (c) is showing the success rate depending on the required
minimal range of certainty, which goes slightly above 94 %. Earlier success or sequences

of consecutive steps provide the high offset. For the ranges marked by the vertical red

lines, at 20 % and 3 %, the detailed comparison is shown in (a) and (b), respectively.
There the manual annotation in the rows is compared with the method’s results in the

columns. The field on the intersection show the frequency of steps with a tag which end
up in the corresponding class. The class ”unknown/fall back” catches all steps which no
model could reliably predict, ensuring basic operation of the device. The number of false
positives and unknown gaits decreases with the required minimal range of certainty.

The false positives are associated with transition steps, i.e., the gait
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often changes in a step. For the user annotating his/her gait this poses

the problem, that pinning down the moment of transition to a specific

point is difficult. Therefore, the ground truth created with this method

is debatable. After inspection, the effected steps seem ambiguous and the

method’s output reasonable. For the same reason, a range of certainty of

100 % is not achievable.

The required minimal range of certainty should be short enough, to react

in the same step, while being long enough for the controller to react. For our

setup, which is sampling its sensors with 100 Hz, and typical step lengths

between 130 and 180 steps for flat walking and stair climbing, respectively,

this means that a required minimal range of certainty of & 3 % is sufficient.

For this value, the average success rate for all gaits is above 94 %.

The second important result shown in Fig. 3 is that there is a diminish-

ing rate of false positives, even if a specific model provides lower accuracy.

The proposed method classifies unrecognised steps as “unkown gait”, thus

preventing the controller to treat the coming heel strike in a wrong and

possibly dangerous way. This allows the system to apply a fallback control

method, which always ensures the patient’s safety, although most probably

sacrificing comfort.

4. Conclusions

The advantages of our approach are the general applicability and flexibility

of the internal models with respect to applied sensors, hardware configura-

tion, and classification intervals, demonstrated with gaits for flat walking,

stair descending and ascending with comparably few (3) sensors and a low

sampling frequency of 100 Hz. It makes no assumption on specific transi-

tions between states or other dynamic properties, like a finite state based

controller, and is able to switch any time in the gait and as often, as the

user changes his intent.

The here presented method classifies gaits in an on-line scenario with

reaction times fast enough for in step adaptation, high recognition rates

and a diminishing rate of false positives approaching heel strike.

Many approaches apply model invalidation on many sorts of models.3–5

In the here presented case, as long as a model is predicting the sensory

input with a sufficiently small error, the assumption is, that the controller

can apply a control scheme fitting for this model. The important elements

for successful application are (a) a set of suitable sensors, to resolve the

different dynamics; (b) thresholds, which define if the prediction error is

still acceptable and (c) a set of gaits, the controller can actually handle. As
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long, as these factors are well chosen, the presented method is independent

of the set of sensors and the actual geometry of the device, to which it

is applied. In the case of lower extremities, the method allows specialised

support of multiple gaits or movements, increasing the patient’s comfort

and safety.
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11. H. Stinus, Zeitschrift für Orthopädie und ihre Grenzgebiete 138, 278 (2000).
12. S. Nissen, Implementation of a Fast Artificial Neural Network Library (fann),

tech. rep., Department of Computer Science University of Copenhagen
(DIKU) (2003), http://fann.sf.net.


