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1 Motivation

An integrative view of neural circuits and mechanical com-
ponents has been developed by neuroscientists and biome-
chanical scientists [1]. This view argues that mechanical
components (e.g., muscles) cannot be isolated from neural
circuits in the context of substantially perturbed locomotion
[5]. The argument has been supported by cockroach exper-
iments where more modulations of neural signals activating
muscles are detected when cockroaches move over a highly
complex terrain with substantial obstacles! [4].

Based on these findings, we developed a neuromechan-
ical controller consisting of a modular neural network
(MNN) and virtual agonist-antagonist muscle mechanisms
(VAAMs). The MNN basically forms complex sensorimotor
coordination while the VAAMs generates variable compli-
ant leg motions of a hexapod robot. Specifically, the compli-
ant leg motions are achieved by only changing the stiffness
parameters of the VAAMs without any passive mechanisms
or torque and position feedback. As a result, the controller
leads to adaptive and energy-efficient walking on different
surfaces.

2 State of the Art

Here we briefly discuss some aspects of neuromechanical
control for legged locomotion since the motivations and ben-
efits of neuromechanical control are in details described in
[1, 5]. Many neuromechanical controllers have been devel-
oped for different types of locomotion, e.g., salamander-
like trotting, lamprey-like swimming and insect-like walk-
ing. However, most of them are only presented by com-
puter simulations owing to their complexities. For instance,
a neuromechanical model of insect locomotion uses 264 or-
dinary differential equations (ODEs) for describing its cen-
tral pattern generator, muscles actuating jointed legs, and
joint torque feedback to motoneurons [2]. Besides, there are
up to 26 parameters to be tuned in its muscle model, which is
not practical to apply to real legged robots. In contrast, the
virtual agonist-antagonist mechanism (VAAM) introduced

The substantial obstacles are more than three times cockroach hip
height to repeatedly perturb body dynamics.

here is a muscle model with only two tunable parameters.
It can be easily applied to generate variable compliant leg
motions of small legged robots. The mechanism does not
require force/torque sensing at each joint or physical com-
pliant components (e.g., springs or pneumatic artificial mus-
cles).

3 Neuromechanical Control for Adaptive Hexapedal
Walking

Generally, neuromechanical control involves interplays
among neural circuits, muscles, and body mechanics in
multi-legged locomotion. For example, a hexapod robot
(i.e., AMOS) is controlled by a neuromechanical controller.
The control can be modelled as a set of distributed and
closed loops with feedforward and feedback pathways (see
Figure. 1). For feedforward pathways, the controller con-
sists of feedfoward control via descending commands (i.e.,
S, N;, and O;) from a neural circuit to muscle-like mecha-
nisms and body mechanics. In feedback pathway, there is
force sensing (i.e., Ff"’ ) at the end effectors of the legs.

In the controller, the neural circuit is a modular neural net-
work (MNN) (see Figure. 1 (a)), which is a biologically-
inspired hierarchical neural controller. The MNN generates
signals for inter- and intra-leg coordinations of the hexa-
pod robot. The MNN consists of a central pattern genera-
tor (CPG), a phase switch module (PSM) and two velocity
regulating modules (VRMs) [3]. All neurons of the MNN
are modelled as discrete-time, non-spiking neurons. The
virtual agonist-antagonist mechanisms (VAAMs) (see Fig-
ure. 1 (b)) are developed for simulating muscle-like behav-
iors (e.g., variable compliant leg motions) [8, 7]. Specifi-
cally, each joint of the hexapod robot is driven by a VAAM
consisting of a pair of agonist and antagonist mechanisms.
Changing the stiffness parameters (i.e., K;) of the VAAMs
enables AMOS (see Figure. 1 (c)) to achieve variable com-
pliant leg motions, thereby leading to adaptive and energy-
efficient walking on six surfaces (see Figure. 1 (d)) [6]. The
video clip of the advanced walking behavior can be seen at
http://www.youtube.com/watch?v=0dzf8iyt5y0 .
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Figure 1: Neuromechanical Control. It is applied to a hexapod
robot (i.e., AMOS) with 18 joints. Via neural outputs
N; (i=1,2,...,17,18), a neural circuit activates mus-
cles that generate position commands (i.e., O;) to move
the joints of AMOS legs. The legs then interact with
the environment, which produces force feedback (i.e.,
F jex’ ) back to the system. (a) Neural circuit. It is the
modular neural network (MNN) where S € [0.01,0.18]
is the modulatory input determining the speed of robot
legs. The speed of its leg motion increases with increas-
ing S. (b) Muscle-like mechanisms which are here the
virtual agonist-antagonist mechanisms (VAAMs). (c)
Body mechanics of AMOS. (d) Challenging surfaces
(environment) which are here fine gravel, coarse gravel,
very coarse gravel, slippery floor, snow, and elastic
sponge.
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