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Abstract. Orienting attention towards another person of interest is a
fundamental social behaviour prevalent in human-human interaction and
crucial in human-robot interaction. This orientation behaviour is often
governed by the received audio-visual stimuli. We present an adaptive
neural circuit for multisensory attention orientation that combines au-
ditory and visual directional cues. The circuit learns to integrate sound
direction cues, extracted via a model of the peripheral auditory system
of lizards, with visual directional cues via deep learning based object
detection. We implement the neural circuit on a robot and demonstrate
that integrating multisensory information via the circuit generates ap-
propriate motor velocity commands that control the robot’s orientation
movements. We experimentally validate the adaptive neural circuit for
co-located human target and a loudspeaker emitting a fixed tone.

1 Introduction

Orienting spatial attention [15] towards relevant events is a fundamental be-
haviour in humans. Spatial attention is governed by both top-down, endogenous
as well as bottom-up, exogenous mechanisms. Endogenous orientation of spa-
tial attention is driven by the purposeful assignment of neural resources to a
relevant and expected spatial target. It is determined by the observer’s intent
and is a process requiring significant computational resources [13]. For example,
when conversing with another person, our mental resources are engaged and our
spatial attention is directed towards that person. Exogenous orientation of spa-
tial attention is driven by the sudden appearance of unexpected stimuli in the
peripheral sensory space. It is determined by the properties of the stimuli alone
and is manifested as an automatic reflexive saccade requiring significantly less
computational resources [13]. For example, a loud noise or flash of light in our
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sensory periphery directs our attention via orientation of the eyes and/or head
towards the spatial location of the event. This occurs even if our attention is
focused elsewhere in space, for example when conversing intently with a person.
In this article we focus on exogenous spatial attention orientation.

Spatial orientation behaviour is typically driven by the two dominant senses,
vision and sound, providing the necessary sensory cues. Orienting towards an
audio-visual target outside the visual field must initially engage auditory at-
tention mechanisms. The resultant initial saccade towards the target may be
inaccurate since auditory spatial perception is relatively inferior to its visual
counterpart. Any error in orientation may then be compensated for by engaging
the visual attention mechanisms that bring the target in the centre of the vi-
sual field and maintain it there. However, such sequential processing of auditory
and visual spatial cues may result in unnecessary saccadic oscillations in more
complex tasks. For example, orienting towards an unknown person that unex-
pectedly calls out our name from a location outside of the visual field. Although
audio still initiates the orientation response, both auditory and visual spatial
cues (that are also spatially congruent) are needed to generate an optimal ori-
entation response. Processing of such multimodal cues results in smooth and
efficient orientation behavior that minimises saccadic oscillations. Audio-visual
multisensory cue integration has been studied from the perspective of Bayesian
inference [7]. However, Bayesian cue integration implies that a priori auditory
and visual estimates of spatial location as well as of their relative reliabilities
are available. For a robot interacting with a human in a natural setting, the
aforementioned a priori information cannot always be foreseen and integrated
into the robot’s programming.

We present an adaptive neural circuit for smooth exogenous spatial orienta-
tion. It fuses auditory and visual directional cues via weighted cue integration
computed by a single multisensory neuron. The neural circuit adapts sensory cue
weights, initially learned offline in simulation, online using bi-directional cross-
modal learning via the Input Correlation (ICO) learning algorithm [14]. The
proposed cue integration differs from true Bayesian cue integration in that no a
priori knowledge of sensory cue reliabilities is required to determine the sensory
cue weights. The neural circuit is embodied as a high-level adaptive controller for
a mobile robot that must localise an audio-visual target by orienting smoothly
towards it. We experimentally demonstrate that online adaptation of the sensory
cue weights, initially learned offline for a given target location, reduces saccadic
oscillations and improves the orientation response for a new target location.

2 Related work

A comprehensive review of multimodal fusion techniques through a number of
classifications based on the fusion methodology as well as the level of fusion
can be found in [3]. There are a number of techniques reported in the literature
that perform audio-visual fusion in the context of speaker tracking. Conventional
approaches rely on particle filtering [16,12] as well as Kalman filtering and its
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extensions such as decentralized Kalman filters [6] and extended Kalman filters
[8]. Other techniques reported in the literature include location-based weighted
fusion [11], audio-visual localisation cue association based on Euclidean distance
[20], Gaussian mixture models [18] and Bayesian estimation [10]. The goal of
the present work is not to improve upon the numerous existing approaches to
audio-visual spatial localisation. The majority of these systems either focus only
on passive localisation or decouple the computations required for generating the
subsequent motor behaviour from the computations performed for localisation.
Spatial localisation in humans on the other hand utilises multimodal cues and
is tightly coupled to the inevitable action that is subsequently performed, i.e.
smoothly orienting towards the target. In human-robot interaction this natural
and seemingly ordinary behaviour influences the trustworthiness of the robot [4]
and hence the applicability of such a robot to real-world tasks. [2] have exper-
imentally investigated user localisation and spatial orientation via multimodal
cues during human-robot interaction. However, they process auditory and vi-
sual sensor information sequentially to perform localisation. Furthermore, they
decouple localisation from spatial orientation. We, on the other hand, present
a neural learning architecture for crossmodal integration that tightly couples
audio-visual localisation with smooth exogenous spatial orientation.

3 Materials and methods

In the following, an overview of the robotic platform, the processing of audio
and visual signals and the framework for fusing both signals is provided, as well
as the experimental setup.

The robot platform The Care-O-Bot (see Fig. 1) [9] is a research platform,
developed to function as a mobile robot assistant that actively supports humans,
e.g. in activities of daily living. It is equipped with various sensors and has a
modular hardware setup, which makes it applicable for a large variety of tasks.
The main components of the robot are: the omni-directional base, an actuated
torso, the head containing a Carmine 3D Sensor and a high resolution stereo
camera, as well as three laser scanners used for safety and navigation.

Auditory processing The auditory directional cue is extracted by a model of
the peripheral auditory system of a lizard [5]. The model maps the minuscule
phase differences between the input sound signals into relatively larger differences
in the amplitudes of the output signals. Since the phase difference corresponds
to the sound direction, the direction can be be formulated as a function of the
sound amplitudes:

∣∣∣∣ iIiC
∣∣∣∣ = 20 (log |iI| − log |iC|) dB. (1)
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(a) Front view of the robot. (b) Back view of the robot.

Fig. 1: The Care-O-Bot platform with key components highlighted: microphone
array (1), cameras (2, 3), AR marker (4), and loudspeaker (5).

where |iI| and |iC| model the vibration amplitudes of the ipsilateral and con-
tralateral eardrums. The sound direction information in (1) is subsequently nor-
malised to lie within ±1. Therefore, the auditory directional cue can now be
formulated as

xa =

∣∣∣ iIiC ∣∣∣
max

−π
2 ≥θ≤+π

2

∣∣∣ iIiC ∣∣∣ . (2)

where θ is the sound direction. The model is implemented as a 4th-order digital
bandpass IIR filter. The auditory direction cue as given by (1) is used as the
auditory input xa to the adaptive neural circuit. The peripheral auditory system,
its equivalent circuit model and response characteristics, have been reported
earlier in detail [19]. The model’s frequency response is dependent on the phase
differences between the input sound signals, which in turn is dependent on the
physical separation between the microphones used to capture the sound signals.

An off-the-shelf multi-microphone array (Matrix Creator4) was used to cap-
ture the raw sound signals. The microphones were 40 mm apart, resulting in the
model’s frequency response lying within the range 400 Hz–700 Hz. This range
is within the bounds of human speech fundamentals and harmonics (100 Hz to
17 kHz) whilst avoiding the background noise of the robot (approx. 258 Hz) and
experimental arena (approx. 20 kHz).

Visual processing For the visual perception of the robot, the convolutional
neural network YOLOv2 [17] was applied on 2D images taken with a Carmine
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Fig. 2: The adaptive neural circuit. xa(t) and xv(t) are respectively the auditory
and visual directional cues extracted by the robot that are fused to compute the
robot’s angular velocity ω. Synaptic weights, wv and wa, respectively scale the
directional cues.

sensor. YOLO is an object detection network showing state of the art perfor-
mance on various object detection benchmarks. It is also significantly faster than
other object detection architectures released since 2016. Since the computations
are performed on a NVIDIA Jetson TX25, the YOLO-tiny variant is used re-
sulting in a framerate of 5 Hz. The network outputs a bounding box for each
detection, containing the centre of the box (u,v) and its size. Since only the rel-
ative direction of the person is required, only the horizontal position v is used.
This is normalised with the image width to produce a number between ±1.

Crossmodal learning Fig. 2 depicts the adaptive neural circuit for crossmodal
integration. A single multisensory neuron computes the angular velocity ω of
the robot as the weighted sum of auditory and visual directional cues xa and xv
respectively. Audio-visual cue integration is therefore modelled as

ω = wvxv(t) + waxa(t) (3)

In (3) wv and wa are the synaptic weights that respectively scale the visual and
the auditory directional cues. For updating the weights, two learning rules that
reflect bi-directional crossmodal integration are defined:

δwv(t)

δt
= µxv(t)

δxa(t)

δt

δwa(t)

δt
= µxa(t)

δxv(t)

δt
(4)

Both the learning rules employ the same learning rate µ. In either learning rule,
the directional cue from one modality is multiplied with the time derivative
of the directional cue from the other modality. Therefore, (4) represent cross-
correlations between one directional cue and the rate of change of the other.

5 www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/

?section=jetsonDevkits
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There are no vision weight updates when either the visual cue becomes zero
and/or the auditory cue becomes constant or zero. This mechanism ensures that
the weight updates progressively get relatively smaller the closer the target moves
to the centre of the FoV and the slower it moves. This allows the weights to sta-
bilise when the robot is pointing directly towards the target. A similar argument
can be made for the auditory weight updates. Such bi-directional crossmodal
learning allows both the visual and auditory cue weights to stabilise by compen-
sating for errors in the directional cues extracted from either modality.

When the target is outside the FoV the visual cue xv is zero. Therefore,
the visual and auditory cue weights wv and wa are not updated and remain
fixed at their initial values. The robot’s turning behaviour initially depends only
on the magnitude of the auditory cue. As the robot keeps turning, the human
subject eventually appears within the FoV. Both visual and auditory cues xv and
xa then become non-zero. As the robot continues to turn towards the human-
loudspeaker target, it comes closer to the centre of the robot’s auditory and FoV.
Consequently, both the visual and auditory directional cues gradually decrease
towards 0. The angular velocity ω, computed by (3), will also gradually decrease
as a result. The robot should stop turning when it is aligned with the target.

Experimental setup The task of the robot in the experimental arena (Fig. 3),
is to align towards an audio-visual target represented by a human subject (P) co-
located with a loudspeaker (S). The angular position of the target relative to the
robot’s initial orientation is defined as left for −45◦ and right for 45◦. The initial
orientation of the robot in all trials is facing forward, defined as 0◦. The robot
must adaptively fuse visual and auditory directional cues to generate appropriate
motor velocity commands to orient towards the target. The adaptation comes
from learning appropriate sensory cue weights wv and wa, respectively for the
visual and auditory signals. The weights are initially learned offline in simulation
and then adapted online to smoothen the orientation movements of the robot
for targets not encountered previously.

Simulation trials: The sensory cue weights of the neural circuit are first learned
offline in simulation, using an instance of the neural circuit. In the simulation
the target is placed on the right, meaning that the the weights learned offline
represent optimised values for the target located to the right.

The weights wa and wv are randomly initialised to values between 0.01 and
0.05. At each simulation time step in a single trial, two simulated 600 Hz sinu-
soids, phase-shifted according to sound source location and microphone separa-
tion, are input to the ear model. These sinusoids model a loudspeaker emitting a
600 Hz tone from the target position. The normalised output xa of the ear model
maps to angular positions ±90◦ relative to the initial orientation. The neural cir-
cuit computes the angular velocity using (3) and this orients the robot towards
the target. As the target enters the FoV, the normalised visual directional cue
xv, between ±1 is generated. This maps to a FoV of approx. ±29◦ relative to
the initial orientation. The weights wa and wv are subsequently updated via the
ICO learning rules given by (4).
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Fig. 3: Experimental setup where a loudspeaker (S) is placed 1 m away from
robot (R) at an offset from the centre by ±45◦ and with a person (P) standing
just behind it. The field of view (FoV) is approx. ±29◦ and the field of audio
(FoA) is approx. ±90◦.

We quantify the orientation performance in terms of the orientation error.
The orientation error is defined as the difference between the robot’s orienta-
tion after any oscillations have died out and the target’s angular position. We
determine the average orientation error over a set of 10 trials with randomly ini-
tialised, but identical sensory cue weights. We perform this step 30 times to get
30 values for the average orientation error. We then perform an additional trial
using, as the initial weights, the initial weights for the set with the lowest average
orientation error. The weights learned at the end of this trial (wa = 0.027744,
wv = 0.034845) are deemed as the optimised, offline-learned weights.

Real world trials: The target is a human subject co-located with a loudspeaker
emitting a 600 Hz tone. The real-world trials use another instance of the neural
circuit that can adapt the offline-learned weights further, to generate smooth
orientation movements. We perform two sets of trials, one where the target is
located to the right and another where the target is located to the left. We
perform 20 trials for each target location, where 10 trials are without online
learning and 10 trials are with online learning. Therefore, 40 trials are performed
in total. In all trials, the neural circuit is initialised with the offline-learned,
optimised values for wa and wv.

A PrimeSense 3D sensor in conjunction with the ALVAR [1] software library
tracks an AR marker attached to the robot (Fig. 1b). The tracking data is used to
determine rotation angle of the robot relative to its initial orientation. The goal
configuration, i.e. the robot facing the target and the person being in the center
of the FoV, is identified manually and used as ground truth. We quantify the
orientation performance of the robot in terms of the orientation error and time
taken for any oscillations in the robot’s movement to settle. The orientation error
is defined as the difference between the robot’s orientation after any oscillations
have died out and the goal configuration. We define the time taken for the
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Fig. 4: Recordings from a single trial, with the target located on the left. Top:
Auditory (solid black line) and visual (dotted lines) cues; the red line shows
the orientation of the robot relative to the target. Bottom: weights for auditory
(solid line) and visual (dotted line) cue. Shaded regions indicate the period in
which audio-visual fusion occurs.

(a) Average offset. (b) Average settling time. (c) Average oscillations.

Fig. 5: Average results for the turning behaviour with and without learning with
error bars indicating the standard deviation.

oscillations in the robot’s movements to settle as the oscillation period. It is
determined as the time from the first overshoot to when the standard deviation
in orientation error reduces to below 0.3◦.

4 Results

In this section we present the results from the real-world trials. Fig. 4 shows
experimental data from a single trial where the development of the sensory cues,
the corresponding weights and the orientation error is visible. It is evident that
the orientation error initially decreases relatively slowly, when only the auditory
cue is available. Once the visual cue becomes available (i.e. non-zero) the neural
circuit fuses the two together to adaptively orient the robot towards the target.

The average performance of the turning behaviour it shown on Fig. 5 for
both target configurations with and without learning. Since the offline weights
are optimised for a target on the right side, significant improvement cannot be
expected on that side. Using the offline weights for orienting to the left without
fine-tuning them online results in greater orientation error in general. In this
case, using online learning to further fine-tune the weights proves beneficial as it
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reduces orientation error significantly. This supports our hypothesis that online
fine-tuning of the weights smoothes the orientation movements of the robot for
a target not encountered previously.

For assessing the effect of learning a two-tailed t-test with equal variances not
assumed has been conducted. For the left side, online learning reduces the offset
by 49 % in average and significantly (p = 0.041) improves the robot behaviour.
For the right side, online learning leads to a marginal increase of the offset
(p = 0.020).

The oscillations are found to be reduced significantly for the left target (p =
0.043) while no difference was observed for the right target. No significant effect
has been found for the settling time although the trend for this measure was
slightly positive for both targets.

5 Conclusion and future work

We have presented an adaptive neural circuit for multimodal and smooth exoge-
nous spatial attention orientation, in a human-robot interaction scenario. The
circuit adaptively fuses auditory and visual directional cues online to orient a
mobile robot towards an audio-visual target. We first learned the auditory and
visual cue weights offline in simulation for a target located on the right only. We
adapted the weights via online learning in real world trials for targets located on
both the left and the right of the robot. We determined the orientation error and
time taken for possible oscillations in robot’s movements to settle. For the target
to the left, we observed significant improvement in orientation error with online
learning as compared to without online learning. This supports our hypothe-
sis that fine-tuning of the weights via online learning smoothes the orientation
movements of the robot for a target not encountered previously.

The smooth spatial orientation behaviour can be subsequently extended to
smoothly approach a human subject. Smooth approach can be achieved by ex-
tending the adaptive neural circuit to include the depth information. The sound
localisation used here can be extended to localise natural human speech by com-
bining multiple ear models with varying sound frequency responses.
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