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Abstract— Human arms can produce stable and variable
compliant joint motions to achieve tasks in various spatial tasks
and temporal scales. To emulate such motions we propose an
adaptive motor controller (AMC) allowing for spatial-temporal
adaptation of human-like motor control. The AMC is a
biomimetic controller consisting of online force and impedance
(i.e., stiffness and damping) adaptation to different tasks and
unknown arm dynamics. As a result, the AMC can produce
more accurate and stable human-like reaching and tracking
behaviors, compared to conventional controllers. Moreover,
the reproduced spatial-temporal adaptation is comparable to
that found in the experiments of human motor control. The
proposed AMC may pave a novel and simple way forward
to understanding and solving inverse dynamics and variable
impedance control in robotics and biomechanics.

I. INTRODUCTION

Human sensorimotor systems excel in stable variable com-
pliant behaviors in dynamic and unpredictable environments
[1], [2], [3], [4]. Whereas most robots are still controlled
by high gain negative error feedback control (e.g., PD
control) [5], [6]. Humans are capable of utilizing previously
learned motor skills in various (e.g., spatial or temporal)
contexts than in that of initial acquisition [7]. This character
refers to the spatial-temporal adaptation from one motor
task or context to another, i.e., knowledge shared between
spatially-temporally different tasks or contexts. For example,
humans performed directional reaching and circular tracking
in different time scales, leading to adaptive motor behaviors
in different spatial-temporal contexts [8]. It has been shown
that the human central nervous system (CNS) adapts force
and impedance control to various, spatial-temporal tasks [1].
Many researchers have explored the advantages of variable
force and impedance control in various tasks. Such control
allows not only for different (e.g., temporal) task contexts,
but also for flexible applications to different robots.

Variable force and impedance control has been mainly
studied through reinforcement learning (RL) [5], [9], opera-
tional space control (OSC) [10], [11], [12], optimal control
[13], [14], [15], and adaptive control [2], [3], [4]. For
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instance, Rajeswaran et al. (2017) proposed an approach of
natural policy gradient based on RL, resulting in a variety of
continuous motor control tasks (e.g., hopping) [9]. However,
such generalized control can not solve the problem of guar-
anteeing executional stability of learned tasks with variable
impedance [6]. Based on PD control resulting stable motion
executions, Mistry and Righetti (2011) developed a new
method to derive OSC for constrained under-actuated robots,
increasing OSC’s computational efficiency in controlling a
simulated and three-joint robot [10]. However, the impedance
(i.e., stiffness and damping) parameters were not learned
in the task, preventing its application to different tasks. To
online learn impedance parameters of a two-link robot, Braun
et al. (2012) presented an optimal stiffness controller for
explosive movement tasks (e.g., throwing balls) [13]. The
controller is based on the iterative linear quadratic regulator
(iLQR) framework that exploits local state-output approx-
imations and nonlinear robust control, leading to control
adaptations to different robot configurations and task contexts
[14], [15]. However, the iLQR is prone to be computationally
expensive in continuous motor control tasks, as an extension
of the linear quadratic regulator (LQR) and differential
dynamic programming (DDP). To achieve inexpensive and
adaptive impedance control, Smith et al. (2015) presented
a hybrid adaptive controller for compliant movements of
a simulated Baxter arm [4], [3]. However, such adaptive
control relies highly on gains for achieving stable executions
in different tasks [6]. For detailed introductions of related
works can be seen in [6], [5]. Overall, developing a stable,
computationally inexpensive, and simple (e.g., less gain
dependence) controller for human-like impedance adaptation
is an unsolved problem.

To tackle the problem we propose an adaptive motor
controller (AMC) for variable force and impedance control
of a simulated human arm (see Fig. 1). The AMC is a
biomimetic controller consisting of force and impedance
parts that emulate feed-forward and feedback control in
human motor control. The learned force and impedance (i.e.,
stiffness and damping) are online updated by an adaptation
law, where the force and impedance adaptation relies mainly
on task errors in joint space. The adaptation law is derived
from a cost function encoding dynamics adaptation and task
parameters, and based on Lyapunov theory.

The main contributions of the proposed AMC include:
• A simple and novel adaptation law allows for stable and

variable compliant human-like motor control;
• Such human-like control produce more accurate and sta-

ble directional reaching and circular tracking, compared
to the implemented OSC and iLQR [11], [14], [15];



• Such human-like control can reproduce spatial-temporal
adaptation that is comparable to that found in human
motor control and learning [8], [7].

II. HUMAN MOTOR CONTROLLERS
Consider a human arm model with two joints (see Fig. 1),

moving it with dynamics [15]:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (1)

where M(q) is the positive definite symmetric inertia matrix,
q the joint angle vector (i.e., shoulder: q0, elbow: q1),
C(q, q̇)q̇ the torque vector owe to centripetal and Coriolis
forces, G(q) the torque vector due to gravity, and τu is
the joint torques produced by muscles. The matrices and
vectors are determined by the kinematics and geometry (see
Appendix (IV-A) and Table I [16]) of the human arm.
The control laws (i.e., τ in Eq.(1)) of the three human
motor controllers are presented and derived for human-like
directional reaching and trajectory tracks.

A. Adaptive Motor Controller (AMC)
Inspired by the principles of human motor control [2], [1],

the torque τ(t) ∈ R2×1 produced by the AMC (see Fig. 1)
includes the force and impedance parts:

τ(t) = −F (t)︸ ︷︷ ︸
force

−K(t)e(t)−D(t)ė(t)︸ ︷︷ ︸
impedance

(2)

The position (e(t) ∈ R2×1), velocity (ė(t) ∈ R2×1), and
tracking (ε(t) ∈ R2×1) errors are given by:

e(t) = q(t)− qd(t), ė(t) = q̇(t)− q̇d(t), ε(t) = e(t) + βė(t)
(3)

Suppose that a task is characterized by the trajectory qd(t)
(t ∈ [0, T ]), the AMC enables the arm (see Fig. 1) to achieve
the task through online adapting the feed-forward force F ∈
R2×1 and impedance parameters (K(t) ∈ R2×2 and D(t) ∈
R2×2). The impedance parameters are the arm stiffness and
damping matrices of the human arm (see Fig. 1):

K(t) =

[
k0(t) k1(t)
k2(t) k3(t)

]
, D(t) =

[
d0(t) d1(t)
d2(t) d3(t)

]
(4)

where k0,1,2,3(t) and d0,1,2,3(t) are dependent on the joint
stiffness and damping parameters of the human arm. Their
detailed definitions can be seen in [17].

The force (F ) and impedance ((K,D)) adaptations are
achieved by minimizing task errors and maintaining control
stability [18], [2]:

Jc(t) =
1

2

∫ t

t−T

‖vec(K̃)‖2Qk + ‖vec(D̃)‖2Qd + ‖F̃‖2Qf dσ
(5)

utilizing a linear second order impedance model [19] where
‖.‖Qτ ,Qk,Qd and vec(.) are the weight norms and column
vectorization, while maintaining control stability due to the
arm dynamics through:

Jp(t) =

∫ t

t−T

V̇ (σ)dσ, V (t) =
1

2
εT (t)M(q)ε(t) (6)
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Fig. 1. Adaptive motor controller (AMC). Fed with the errors
(e(t), ė(t), ε(t)) (see Eq.3), the AMC utilizes the adaptation law (see Eq.8)
to update its force (F (t)) and impedance (K(t) and D(t)) parts (see Eq.2),
leading to adaptive motions (x, y) to achieve tasks (e.g., tracking desired
trajectories) in the Cartesian space. The AMC is a joint space controller
that relies on the inverse kinematic (IK) of a two-link human arm [16] (see
its geometry parameters in Table I).

The overall minimized cost function is given by:

J(t) = Jp(t) + Jc(t) (7)

Based on the cost function J(t), the force and impedance
adaptation is guided by:

F (t) =
ε(t)

γ(t)
,K(t) = F (t)eT (t), D(t) = F (t)ėT (t) (8)

where γ(t) is an adaptation scalar with the positive scalars
a and b:

γ(t) =
a

1 + b‖ε(t)‖2
(9)

The derivation of the adaptation (i.e., Eq.8) and the scalar
values can be seen in Appendix (IV-B).

B. Iterative Linear Quadratic Regulator (iLQR)

The dynamics of the human arm (see Eq.1) can be
formulated as:

Ż = AZ +Bτ (10)

where

Z =

[
q
q̇

]
, A =

[
0 1

−M−1G −M−1C

]
, B =

[
0

M−1

]
(11)

The parameters (e.g., M−1) of the human dynamics are
known and took from [15]. Let the deviation from the
nominal τk and Zk be δτk and δZk in terms of the discrete
iLQR [15], [14]. The linearization is given by:

δZk+1 = AkδZk +Bkδτk (12)

Based on the linearized model and tracking trajectories, the
minimized cost function is given by[15]:

J(t) =
1

2
{[eT (t)e(t)] +

∫ t

t−T

rτT τ}dσ (13)



where r = 0.0001. Therefore the control output τ is given
as:

τk+1 = τk + δτk (14)

where δτk is updated by the following set of equations:

δτk = −KδZk −Kvvk+1 −Kuτk,

K = (BT
k Sk+1Bk +R)−1BT

k Sk+1Ak,

Kv = (BT
k Sk+1Bk +R)−1BT

k

Ku = (BT
k Sk+1Bk +R)−1R

Sk+1 = AT
k Sk(Ak −BkK) +Q

vk+1 = (Ak −BkK)T vk −KTRτk +QZk

(15)

The parameters (e.g., R) and detailed description of the iLQR
can be seen in [15], [14].

C. Operational Space Control (OSC)

Rewriting Eq.(1) while cancelling out the centripetal and
Coriolis term in operational space [11]:

τ = JT
ee(q)Mee(q)ẍd +G(q) (16)

with

Mee(q) = [Jee(q)M
−1(q)JT

ee(q)]
−1,

M(q) =

1∑
i=0

JT
i (q)Mxi(q)Ji(q),

Mxi =


mi 0 0 0
0 mi 0 0
0 0 Ixx Ixy
0 0 Iyx Iyy

 ,
G(q) =

1∑
i=0

JT
i (q)Fgi ,

(17)

where Jee(q) is the Jacobian matrix of the end-effector of the
human arm (see Eq.22). m0,1 the masses of the joint center of
mass (COM) (see Table I), J0,1(q) are the Jacobian matrices
of the joint COM, Ixx,xy,yx,yy the moments of inertia, and
Fg0,1 are the gravity forces on the arm segments (see Table I).
Defining a basic PD controller in the Cartesian space:

q̈d = kp(qd − q) + kv(q̇d − q̇), kv = 9, kv =
√
kp (18)

Substituting Eq.(18) into Eq.(16):

τ = JT
ee(q)Mee(q)[kp(qd− q) +

√
kp(q̇d− q̇)] +G(q) (19)

The detailed description of the OSC can be seen in [11],
[12].

III. EXPERIMENTS
The three controllers (described above) were implemented

for achieving motor control tasks by using a physically
simulated two-link arm. The arm is modelled after the human
arm (see Fig. 2 and Table I) and built using MAPLESIM
[11], [12]. The performance of the controllers are measured
by the position error rate ζ and real ran time RT :

ζ =

∑T
t=0[

√
(x(t)− xd(t))2 + (y(t)− yd(t))2]

N ∗ dis
,N =

T

0.01
(20)

where dis is the travelled distance of a desired trajectory
(xd, yd), T the time of task execution with time step
∆t = 0.01, and N is the amount of its ran steps. The
three controllers and their real ran time RT were ran and
measured in a laptop (DELL Latitude E7470), respectively.

The experiments of spatial-temporal adaptation refer to

Desired trajectory 

τ0

τ=[ τ0 , τ1]

τ1
Real trajectory 

Fig. 2. A physically simulated human arm [11], [12]. Its geometry
parameters are took from [16] (see Table I).

human motor control experiments [8], [7]. The tasks of
multiple direction reaching and circular trajectory tracking
were performed using the three controllers, respectively. For
directional reaching, there were the 8 reaching targets in the
8 directions separated by 45◦ with the distance of 0.10(m).
The required reaching time of each target is fixed, i.e.,
T = 0.5(s). For circular trajectory tracking, the center of
the circular trajectory is [x = 0.00, y = 0.00](m) with the
radius of 0.30(m) and the tracking time T = 8(s). Note
that the time T of task execution is the same for the three
controller in a task, but their real ran time RT differs owing
to their computation efficiency.

We can see that the proposed AMC and implemented
iLQR succeeded in the human-like 8-target reaching (see
the read and blue lines in Fig. 3 (A)), compared to the
implemented OSC. This is because the AMC and iLQR
allow for the larger joint torques (e.g., see the shoulder
torque in Fig. 3 (B)) owing to online parameter adaptation.
However, the AMC’s parameter adaptation makes for more
stable and smoother joint torques, compared to the iLQR.
Such joint torques result from the force and impedance
adaptation (see the read lines in Figs. 3 (C)-(E)) derived
from Lyapunov stability (see Eq.8). Moreover, the iLQR
failed to achieve the circular movement tracking (see the
blue line in Fig. 3 (F)), while the AMC succeeded due to
the larger and smoother joint torques (e.g., see the red line
in Fig. 3 (G)). Such joint torques arise from online force
and impedance adaptation based on the same adaptation law
(see Eq.8) used in the directional reaching task. However,
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Fig. 3. Human-like motor behaviors resulted from the AMC, iLQR, and OSC. (A)-(E) and (K)-(L) depict the results of the 8-target reaching, while (F)-(J)
and (M)-(N) show the results of the circular trajectory tracking. (A) The reaching trajectories (x, y) by the three controllers. (B) Shoulder joint torques
τ0 by the three controllers. (C) -(D) Stiffness k0(t), damping d0(t), force (f0) adaptation by the AMC (see Eqs.(4) and (2)). The parameter adaptation
follows Eq.(8). (F) The tracking trajectories (x, y) by the three controllers. (G) Shoulder joint torques τ0 by the three controllers. (H) -(J) Stiffness k0(t),
damping d0(t), force (f0) adaptation by the AMC (see Eqs.(4) and (2)). The parameter adaptation follows Eq.(8). (K)-(N) The position error rates ζ and
ran time RT for the 8-target reaching and circular tracking (see Eq.(20), respectively. Black solid circles: reached targets; red lines and bars: AMC; blue
lines and bars: iLQR; green lines and bars: OSC.

its adaptation amplitudes and patterns differ from those in
the directional reaching task. For example, larger impedance
and force were required in the initial period of the circular
tracking task (see Figs. 3 (H)-(J)), while similar impedance
and force occurred in the middle and end periods of the
directional reaching (see Figs. 3(C)-(E)). Such adaptations
result in more accurate reaching and tracking behaviors (i.e.,
less position error rate ζ, see Figs. 3 (K) and (M)), compared
to the implemented iLQR and OSC. Furthermore, one can
see that computation of the iLQR are much more expensive
(see Figs. 3 (L) and (N)) than those of the AMC and OSC due
to its complex control law (see Eq.15). The video clip can
been seen at https://www.youtube.com/watch?v=
gldRGmZJyI8. The AMC still succeeded in more irregular
(i.e., star) trajectory tracking tasks that the implemented OSC

and iLQR failed in. This is because its law (see Eq.8) makes
for the amplitude and frequency of the force and impedance
parameters (see Eqs.(4) and (2)) in a variety of motor control
tasks (see the adaptation comparison in Figs. 4 (C)-(E)). The
video clip can been seen at https://www.youtube.
com/watch?v=xzwwRoXZozs. Taken together the AMC
can produce more accurate and stable human-like motor
behaviors (e.g., real time trajectory tracking), compared to
the implemented iLQR and OSC.

IV. CONCLUSIONS

The proposed AMC is a biomimetic controller allowing for
online force and impedance in various motor control tasks.
Its simple adaptation law could be applied to online adaptive
control in bio-mechatronic devices (e.g., prostheses). On the

https://www.youtube.com/watch?v=gldRGmZJyI8
https://www.youtube.com/watch?v=gldRGmZJyI8
https://www.youtube.com/watch?v=xzwwRoXZozs
https://www.youtube.com/watch?v=xzwwRoXZozs
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Fig. 4. Irregular trajectory tracking. (A) The tracking trajectories (x, y) by
the three controllers. (B) The position error rates ζ. (C)-(E) The comparison
of the stiffness k0(t), damping d0(t), force (f0) adaptation in the circular
and irregular tracking. The parameter adaptation follows Eq.8. Red solid
lines: Irregular tracking; magenta dashed line: circular tracking (the same
as those in Figs.3 (H) -(J)).

another hand, it can be extended to solve a problem of inverse
dynamics adaptation in high DOF robots.

APPENDIX

A. Kinematic and Geometry of the Human Arm

The position (x, y) the arm end-effector is be given by:[
x
y

]
=

[
L0cos(q0) + L1cos(q0 + q1)
L0sin(q0) + L1sin(q0 + q1)

]
(21)

and its Jacobian matrix is given by:

Jee(q) =

[
−L0sin(q0)− L1sin(q0 + q1) −L1sin(q0 + q1)
L0cos(q0) + L1cos(q0 + q1) L1cos(q0 + q1)

]
(22)

TABLE I
PARAMETERS OF THE TWO LINK ARM OF FIG. 1 [16]

Arms Upper Fore
Masses (kg) 1.93 1.52
Lengths (m) 0.31 0.34

Centers of mass from proximal joint (m) 0.165 0.19
Mass moments of inertia (kgm2) 0.0141 0.0188

B. Adaptation Law of AMC

Let FE(t), KE(t), and DE(t) (see Eq.(8)) be the expected
force, stiffness, and damping matrices for achieving stable
joint motions and task adaptation:

F̃ = F − FE , K̃ = K −KE , D̃ = D −DE (23)

Combining with Eq.5 yields

Jc(t) =
1

2

∫ t

t−T

vecT (K̃)Q−1
k vec(K̃)

+ vecT (D̃)Q−1
d vec(D̃) + F̃TQ−1

f F̃ dσ (24)

where Qf , Qk, and Qd are symmetric positive-definite
matrices, and vec(.) stands for the column vectorization.
Now, Eqs.8 can be written as:

δF̃ (t) = Qf [ε(t)− γ(t)F (t)]→ 0, t→∞
δK̃(t) = Qk[ε(t)eT (t)− γ(t)K(t)]→ 0, t→∞
δD̃(t) = Qd[ε(t)ėT (t)− γ(t)D(t)]→ 0, t→∞

(25)

where all functions are unknown and periodic with T .
Consider the difference between Jc(t) (see Eq.24) of two
consecutive periods:

δJc = Jc(t)− Jc(t− T )

=
1

2

∫ t

t−T

tr{K̃T (σ)Q−1
k K̃(σ)−K̃T (σ−T )Q−1

k K̃(σ−T )}

+ tr{D̃T (σ)Q−1
d D̃(σ)− D̃T (σ − T )Q−1

d D̃(σ − T )}
+ tr{F̃T (σ)Q−1

f F̃ (σ)− F̃T (σ − T )Q−1
f F̃ (σ − T )}dσ

(26)

where tr{.} stands for the trace of a matrix. Using the
symmetry of Q−1

k and Eq.(25), the first term of Eq.(26) can
be written as:

tr{K̃T (σ)Q−1
k K̃(σ)− K̃T (σ − T )Q−1

k K̃(σ − T )}
= tr{[K̃T (σ)− K̃T (σ − T )]Q−1

k

× [2K̃T (σ)− K̃T (σ) + K̃T (σ − T )]}
= tr{δK̃T (σ)Q−1

k [2K̃T (σ)− δK̃(σ)]}
= −tr{δK̃T (σ)Q−1

k δK̃(σ}+ 2tr{δK̃T (σ)Q−1
k K̃T (σ)}

= −tr{δK̃T (σ)Q−1
k δK̃(σ}

+ 2ε(σ)K̃(σ)e(σ)− 2γ(σ)tr{K̃T (σ)K̃(σ)}
(27)

Then, similarly, the second and third terms can be:

tr{D̃T (σ)Q−1
d D̃(σ)− D̃T (σ − T )Q−1

d D̃(σ − T )}
= −tr{δD̃T (σ)Q−1

d δD̃(σ}
+ 2ε(σ)D̃(σ)ė(σ)− 2γ(σ)tr{D̃T (σ)D̃(σ)}

(28)



tr{F̃T (σ)Q−1
f F̃ (σ)− F̃T (σ − T )Q−1

f F̃ (σ − T )}
= −tr{δF̃T (σ)Q−1

f δF̃ (σ}
+ 2ε(σ)F̃ (σ)− 2γ(σ)tr{F̃T (σ)F̃ (σ)}

(29)

Substituting Eqs.(27), (28), and (29) into Eq.(26):

δJc = −1

2

∫ t

t−T

δΦ̃T (σ)Q−1δΦ̃(σ)dσ

−
∫ t

t−T

γ(σ)Φ̃T (σ)Φ̃(σ)dσ

+

∫ t

t−T

ε(σ)K̃(σ)e(σ) + ε(σ)D̃(σ)ė(σ) + ε(σ)F̃ (σ)dσ

(30)

where the matrices Φ̃(t) and Q are given by:

Φ̃(t) = [vec(K̃(t))T , vec(D̃(t))T , F̃ (t)]T

Q = diag(I ⊗Qk, I ⊗Qd, Qf )
(31)

Similarly, using the skew symmetry of the matrix Ṁ − 2C,
Eqs.(1) and (23), δJp of Eq.(6) can be written by:

δJp = Jp(t)− Jp(t− T )

= −
∫ t

t−T

ε(σ)K̃(σ)e(σ)+ε(σ)D̃(σ)ė(σ)+ε(σ)F̃ (σ)dσ

(32)

Combining Eqs.(30 and (32, the derivative δJ of Eq.(7) can
be given by:

δJ = J(t)− J(t− T ) = δJc + δJp

= −1

2

∫ t

t−T

δΦ̃T (σ)Q−1δΦ̃(σ)dσ

−
∫ t

t−T

γ(σ)Φ̃T (σ)Φ̃(σ)dσ

(33)

A sufficient condition for δJ ≤ 0 is that Q−1 is a positive-
definite matrix and,

γ(σ) > 0, Φ̃T Φ̃ ≥ 0. (34)

The scalars a and b in γ(t) are set as:

a = 0.2, b = 5 (35)
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