
Haptic Feedback with a Reservoir

Computing-Based Recurrent Neural Network for

Multiple Terrain Classification of a Walking

Robot

Pongsiri Borijindakul1, Noparit Jinuntuya2, and Poramate Manoonpong1,3,⇤

1 Institute of Bio-inspired Structure and Surface Engineering,
College of Mechanical and Electrical Engineering,

Nanjing University of Aeronautics and Astronautics, Nanjing, China
2 Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
3 CBR Embodied AI & Neurorobotics Lab, The MærskMc-Kinney Møller Institute,

University of Southern Denmark, Odense M, Denmark
kobekang@nuaa.edu.cn, *poma@nuaa.edu.cn

http://neutron.manoonpong.com/

Abstract. Terrain classification is an important feature for walking
robots because it allows the robots to stably move and operate on the
terrain. Di↵erent terrain classification techniques have been developed.
The techniques include the use of di↵erent exteroceptive and propriocep-
tive sensors with di↵erent classification methods. Whereas these tech-
niques have been widely used to classify flat, hard, and rough terrains,
their application to soft terrains has not been fully addressed. Achiev-
ing soft-terrain classification will expand the operational range of walk-
ing robots. Thus, in this study, we propose a new technique to classify
various terrains including soft ones. The technique exploits haptic feed-
back (expressed only through ground contact force measurement of a
legged robot) and neurodynamics with the temporal memory of a reser-
voir computing-based recurrent neural network. We used six di↵erent
terrains to evaluate the performance of the proposed technique. The ter-
rains include sand (loose ground), foams with di↵erent softness levels
(soft ground), and floor (hard ground). The experimental results show
that we can successfully classify all terrains with an accuracy of above
70%. Furthermore, owing to the temporal memory of the network, if the
haptic feedback is transiently missing, the network will be still be able
to classify the terrain considerably well.

Keywords: Terrain classification · Soft terrains · Haptic feedback · Neu-
ral networks · Walking machines.

1 Introduction

Walking animals can stably move around and adapt their locomotion to the
terrain. Walking robots, to achieve the same behavior, have to be able to dif-
ferentiate terrain properties. Thus, terrain classification is an important feature
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for robots. Di↵erent terrain classification techniques have been developed [1-10].
The techniques include the use of exteroceptive sensors (e.g., a camera [5], a
2D laser range finder [7]) and/or proprioceptive sensors (e.g., joint angles [11],
tactile or ground contact force sensing [8-10], and a combination of joint motor
current and ground contact force [12]) with di↵erent classification methods. The
typical methods include the root-mean-square value [7], discriminant function
[9], support vector machines [5,10], neural networks [13], and adaptive boosting
machine learning [12]. These techniques, while impressive in their own right, have
been used to mainly classify flat, hard, and rough terrains. Their application to
soft terrain classification has not been fully addressed. Thus, in this study, we
propose a new technique to classify various terrains including soft ones. Inspired
by the work of [12,13], our technique exploits two main ingredients: i) haptic
feedback (expressed only through ground contact force sensing [12]) and ii) neu-
rodynamics with the temporal memory of a reservoir computing-based recurrent
neural network [13]. Compared with the above-mentioned techniques, which typ-
ically require multiple proprioceptive sensors [12,13] or additional exteroceptive
sensors [2-5], our approach here uses only a ground contact force sensor installed
in a front leg of our hexapod walking robot. This sensor, or haptic feedback,
provides a direct interaction between the leg and the terrain, thereby allowing
the robot to sense di↵erent terrain softnesses which might be di�cult to obtain
by using an exteroceptive sensor. The feedback is directly processed through
a recurrent neural network. Owing to the temporal memory of the network, if
the feedback is transiently missing, the network will still be able to classify the
terrain considerably well. We emphasize that the embedded temporal memory
of the network leads to more robust classification compared to other techniques.
Thus, our proposed technique can be a basis for expanding the operational range
of walking robots to cover not only flat, hard, and rough terrains but also soft
terrains.

2 Bio-inspired Hexapod Walking Robot System

In this study, we used our bio-inspired hexapod walking robot system to develop
our terrain classification technique. The system consists of two main parts: (1)
a bio-inspired robot hardware platform (AMOSII) and (2) neural locomotion
control.

2.1 Bio-inspired Robot Hardware Platform

AMOS II (Fig. 1(a)) is a bio-inspired hexapod walking robot[10]. The morphol-
ogy of cockroaches inspired the robot body. The robot has six identical legs that
are connected to the truck. The truck consists of two thoracic jointed segments.
AMOS II has in total 19 active joints (three at each leg and one backbone joint).
Its active backbone joint is inspired by a cockroach. The backbone joint provides
the flexibility to the body. In addition, the body joint torque is tripled by the use
of gear to achieve a more powerful body joint motion. The thoracal-coxal (TC)
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joint controls the forward/backward motion of the leg, the coxal-trochanteral
(CTr) joint plays the role of extension and flexion of the second part of the leg,
and the femoral-tibial (FTi) joint drives up/down motion of the third part of
the leg. AMOSII also has six ground contact force sensors installed in its legs. In
this study, we use only one ground contact force sensor at a front leg to receive
haptic feedback for terrain classification.

Fig. 1. (a) The bio-inspired robot hardware platform AMOSII. (b) Neural locomotion
control of AMOSII.

2.2 Neural Locomotion Control

The locomotion control has been developed based on a modular structure. It
consists of two main components: CPG-based control and local leg control [14]
(Fig. 1(b)). The CPG-based control coordinates all leg joints of AMOS II,
thereby generating insect-like leg movements and a multitude of di↵erent be-
havioral patterns. The patterns include forward/backward walking, turning left
and right, and insect-like gaits. The local leg control using proprioceptive sen-
sory feedback (such as ground contact force sensors) adapts the movement of an
individual leg of AMOS II to deal with a change of terrain, loss of ground contact
during the stance phase, or stepping on or hitting an obstacle during the swing
phase. Each leg has two components facilitating local leg control: (1) an adaptive
neural forward model, transforming the motor signal (e↵erence copy) generated
by the CPG into an expected sensory signal for estimating the walking state,
and (2) elevation and searching control for adapting the leg motion (e.g., ex-
tension/flexion and elevation/depression). For more details of neural locomotion
control, see [15].

3 Reservoir Computing-Based Recurrent Neural Network

for Multiple Terrain Classification

Here we use the computational model using a recurrent neural network (RNN)
of the reservoir computing (RC) type [16,17] (Fig. 2) for multiple terrain classifi-
cation. Owing to the dynamic reservoir, the network with recurrent connections
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exhibits a wide repertoire of nonlinear activity and temporal memory. Typically,
the reservoir computing-based recurrent neural network has three layers: input,
hidden, and output layers. The hidden layer is constructed as a random net-
work with N hidden recurrent neurons and fixed randomly initialized synaptic
connectivity.

Fig. 2. Reservoir computing-based recurrent neural network for terrain classification.

The recurrent neural activity within the dynamic reservoir varies as a function
of its previous activity and the current driving input signal. The discrete time
state dynamics of reservoir neurons is given by:

x(t+ 1) = (1� �)x(t) + �fsys(Winu(t+ 1) +Wsysx(t) + b0), (1)

y(t) = Woutx(t), (2)

where x(t) is the N-dimensional vector of neural state activations; u(t) is the
input to the reservoir, which, in this case, is a single CTr-motor signal (see
Fig. 1(a)); y(t) is the vector of output neurons. In this study, we use one output
neuron to classify di↵erent terrains. The reservoir time scale is controlled by the
parameter �, where 0 < �  1. Here the parameter is set to 0.9. A constant
bias b0 = 0.001 is applied to the reservoir neurons. Win and Wsys are the
input to reservoir weights and the internal reservoir recurrent connection weights,
respectively. The output weights Wout are calculated using the recursive least
squares (RLS) algorithm [18] at each time step, while the training input u(t)
is being fed into the network. Wout are calculated such that the overall error
is minimized. We implement the RLS algorithm using a fixed forgetting factor
(�RLS < 1) as follows:

e(t) = d(t)� y(t), (3)

K(t) =
p(t� 1)x(t)

�RLS + xT p(t� 1)x(t)
, (4)
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p(t) =
1

�RLS
[p(t� 1)�K(t)XT (t)p(t� 1)], (5)

Wout(t) = Wout(t� 1) +K(t)e(t). (6)

Here for each input set u(t), the reservoir state x(t) and network output y(t)
are calculated using Equations 1 and 2; e(t) is the error calculated from the
di↵erence between the desired output d(t) (here, foot contact signal) and the
network output y(t). K(t) is the RLS gain vector and p(t) is the auto-correlation
matrix updated at each time step. The reservoir to output weights Wout are
initially set to zero. The forgetting factor �RLS is set to a value less than 1
(here, we use 0.99). The auto-correlation matrix p is initialized as p(0) = I/�,
where I is unit matrix and � is a small constant (i.e., 10�4). Details of all the
fixed parameters and initial settings for the reservoir model are summarized in
(Table 1). The network output y(t) is finally sent to a low-pass filer neuron (i.e.,
a single recurrent neuron with a linear transfer function, see Fig. 2) in order to
smooth the output signal. Here we set the connection weight from the output
neuron to the low-pass filter neuron to 0.05 while the recurrent weight of the
low-pass filter neuron is set to 0.95.

Table 1. List of network parameter settings.

Parameter Value
Number of input neurons 1
Number of output neurons 1
Number of hidden neurons 50

Learning mode RLS
Internal transfer funtcion (fsys) Tanh

Output transfer function Linear
Input sparsity 20

Internal sparsity 50
Forgetting factor (�RLS) 0.99

RSL = the recursive least squares algorithm

Figure 3 shows the input, low-pass filter output, desired output, and error of the
network. Figure 4 shows that the network can still predict the terrain although
the network input which a foot contact sensor feedback is missing. Due to the
temporal memory of the network, it allows the network to deal with the missing
input information.
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Fig. 3. Signals while the robot walked on di↵erent terrains. The first row shows the
haptic feedback. The second row shows the output of the network. The third row shows
the desired output and the last row shows the error between the desired output and
the low-pass filter output.
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Fig. 4. An example of the prediction of lost information while the robot walked on the
floor.

4 Multiple Terrain Classification

In our experiment, we chose six di↵erent terrains with di↵erent sti↵nesses namely,
floor, sand, foam of density 80 kg/m3 (foam A), foam of density 32 kg/m3 (foam
B), foam of density 89 kg/m3 (foam C), and foam of density 37 kg/m3 (foam
D) (see Fig. 5). First, we let the robot walk on the six terrains with a tetrapod
gait and used the feedback from the foot contact sensor in the right front leg
to indicate the terrain property. Figure 6 shows an example of the foot contact
sensor feedback from the six terrains.

Fig. 5. Six di↵erent terrains for testing. The terrains include sand (loose ground), four
foams with four di↵erent softness levels (soft ground), and floor (hard ground).
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Fig. 6. Haptic feedback from the ground contact force sensor of the right front leg of
AMOSII. The feedback was recorded while the robot walked on each terrain.

We applied force feedback from the robot leg to classify terrains by using our pro-
posed reservoir computing-based recurrent neural network technique and com-
pared with two di↵erent techniques, which are standard mean value and metrol-
ogy techniques. The standard mean value technique is the wieldy used technique
for analyzing data by using standard deviation. The standard deviation is a mea-
sure of how spread out numbers are and is calculated as the square root of the
variance. Variance is the average of the squared di↵erence from the mean. If y
is the average value of force feedback on each terrain and Y is the outcome,
then the results of force feedback are analyzed by using the standard deviation
of testing values (see Equations 7 and 8):

Y = y ± SD (7)

SD =

r
(x� x)2

n� 1
(8)

The metrology technique provides a high level of accuracy of data analyzed by
using the expanded uncertainty. We evaluated the value of the repeatability of
the measurement process to calculate the expanded uncertainty. Expanded un-
certainty is the product of combined standard measurement uncertainty and a
factor larger than 1. The expanded uncertainty (U) is calculated as U = cov-
erage factor k times combined uncertainty Uc(y) (see Equation 10), where k
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is from e↵ective degrees of freedom. The e↵ective degrees of freedom Veff can
be calculated from Equation 11, where ci is the sensitivity coe�cients, u(xi)
is the type A standard uncertainty, Vi is the degrees of freedom of u(xi), and
N is the series of observations (here, N = 1). For combined uncertainty in this
work, we calculated only type A uncertainty (calculated from independent re-
peated observations(n)) (see Equation 13) and set type B uncertainty (evaluated
using available information) to zero because the sensor has good repeatability.
We demonstrated the correction of classification through the confusion matrix
(Table 2).

Y = y ± U (9)

U = kUc(y) (10)

k = Veff =
U4
c (y)

NX

i=1

c4iu
4(xi)

Vi

(11)

Uc =
q
U2
A + U2

B (12)

UA =
SDp
n

(13)

5 Experimental Results

Our experimental results show that the reservoir computing technique can be
used to classify all types of terrains. The standard mean value technique can
be used to classify only three terrains, which are foam A, foam D, and sand.
This is because the average values of foam B and foam C are quite similar. The
metrology technique can be used to classify only four terrains, which are foam A,
foam B, foam D, and sand, whereas foam C cannot be unclassified. The standard
mean value and metrology techniques both have a high percentage of unknown
values because of the overlap of the average values as shown in (Table 2). The
accuracy of classification of floor for the standard mean value and metrology
techniques is higher than that of the reservoir computing because the terrain is
even and the hardness of the floor is obviously higher than others. Moreover,
the standard mean value and the metrology techniques classify terrains by using
the average of input data, but the reservoir computing use both average input
data and the di↵erences in the characteristic of amplitude, therefore, if the signal
looks similar, sometimes it would a↵ect to the classification. In contrast, on the
rest terrains, the reservoir computing method has higher accuracy than standard
mean value and metrology technique (Fig. 7).



10 P. Borijindakul et al.

Table 2. Confusion matrix of three di↵erent techniques for multiple terrain classifi-
cation. The vertical axis represents the actuals and the horizontal axis represents the
output of the classification in percentage.

Fig. 7. The comparative accuracy chart of the three di↵erent methods on the six
di↵erent terrains.
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6 Conclusion

In this work, we demonstrated the performance of our reservoir computing-
based recurrent neural network for multiple terrain classification by using haptic
feedback. The reservoir computing technique can successfully classify all terrains
with an accuracy of above 70% compared with the standard mean value and the
metrology techniques, which cannot classify all terrains. Moreover, the proposed
technique is also able to predict the missing or incomplete information while the
robot walked and still can classify the terrain considerably well. In future work,
we will implement ground contact force feedback from all legs to get more precise
input data and complete terrain information to improve the terrain classification.
We will also use the output of the classification method to allow the robot adapt
its locomotion to the terrain.
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